Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743596

RESUMEN

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

2.
medRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38633806

RESUMEN

Individuals with bipolar disorder are at increased risk for suicide, and this can be influenced by a range of biological, clinical, and environmental risk factors. Biological components associated with suicide include DNA modifications that lead to changes in gene expression. Common genetic variation and DNA methylation changes are some of the most frequent types of DNA findings associated with an increased risk for suicidal behavior. Importantly, the interplay between genetic predisposition and DNA methylation patterns is becoming more prevalent in genetic studies. We hypothesized that DNA methylation patterns in specific loci already genetically associated with suicide would be altered in individuals with bipolar disorder and a history of suicide attempt. To test this hypothesis, we searched the literature to identify common genetic variants (N=34) previously associated with suicidal thoughts and behaviors in individuals with bipolar disorder. We then created a customized sequencing panel that covered our chosen genomic loci. We profiled DNA methylation patterns from blood samples collected from bipolar disorder participants with suicidal behavior (N=55) and without suicidal behavior (N=51). We identified seven differentially methylated CpG sites and five differentially methylated regions between the two groups. Additionally, we found that DNA methylation changes in MIF and CACNA1C were associated with lethality or number of suicide attempts. Finally, we identified three meQTLs in SIRT1 , IMPA2 , and INPP1 . This study illustrates that DNA methylation is altered in individuals with bipolar disorder and a history of suicide attempts in regions known to harbor suicide-related variants.

3.
Neurotoxicology ; 102: 29-36, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38453034

RESUMEN

BACKGROUND: Organophosphorus pesticide (OP) exposure is known to have adverse effects on the nervous system. Children from agricultural communities are at risk of exposure to these chemicals from their indoor environments that can lead to neurological and developmental problems, including changes in behavior. OBJECTIVE: The aim of this study is to evaluate whether the take-home pathway exposure is associated with behavioral and emotional problems in Latino Orchid Community children. METHOD: The study was implemented over a period of two years (2008-2010) in an orchard farming community with a total of 324 parents who had children between the ages of 5-12 years old. Mothers of the children were asked to complete the Child Behavior Checklist (CBCL) and dust from their carpets was collected. Emotional and behavioral deficits were assessed based on the CBCL and house dust was assessed for OP concentrations. In this study, correlations between OPs in house dust and CBCL subscales were estimated using linear regression models with total OP concentrations classified by tertiles. This study also facilitated the comparison between the agricultural and non-agricultural families in terms of behavioral deficits and house dust concentrations of pesticides. RESULTS: The data from the study shows that there was a positive association between the concentration of OP residues in house dust and internalizing behavior (ß=2.06, p=0.05) whereas the association with externalizing behavior was not significant after accounting for sociocultural covariates. Significant positive associations of OP residues with somatic problems (p=0.02) and thought problems (p=0.05) were also found. CONCLUSION: The data support a potential role of OP exposure in childhood development, with a specific focus on internalizing behavior. Future work focused on longitudinal studies may uncover the long-term consequences of OP exposure and behavior.

4.
J Neurodev Disord ; 16(1): 9, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481146

RESUMEN

Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Enfermedades del Sistema Nervioso , Humanos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación , Transducción de Señal
5.
Transl Psychiatry ; 14(1): 70, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296944

RESUMEN

Suicide attempt (SA) risk is elevated in individuals with bipolar disorder (BD), and DNA methylation patterns may serve as possible biomarkers of SA. We conducted epigenome-wide association studies (EWAS) of blood DNA methylation associated with BD and SA. DNA methylation was measured at >700,000 positions in a discovery cohort of n = 84 adults with BD with a history of SA (BD/SA), n = 79 adults with BD without history of SA (BD/non-SA), and n = 76 non-psychiatric controls (CON). EWAS revealed six differentially methylated positions (DMPs) and seven differentially methylated regions (DMRs) between BD/SA and BD/non-SA, with multiple immune-related genes implicated. There were no epigenome-wide significant differences when BD/SA and BD/non-SA were each compared to CON, and patterns suggested that epigenetics differentiating BD/SA from BD/non-SA do not differentiate BD/non-SA from CON. Weighted gene co-methylation network analysis and trait enrichment analysis of the BD/SA vs. BD/non-SA contrast further corroborated immune system involvement, while gene ontology analysis implicated calcium signalling. In an independent replication cohort of n = 48 BD/SA and n = 47 BD/non-SA, fold changes at the discovery cohort's significant sites showed moderate correlation across cohorts and agreement on direction. In both cohorts, classification accuracy for SA history among individuals with BD was highest when methylation at the significant CpG sites as well as information from clinical interviews were combined, with an AUC of 88.8% (CI = 83.8-93.8%) and 82.1% (CI = 73.6-90.5%) for the combined epigenetic-clinical classifier in the discovery and replication cohorts, respectively. Our results provide novel insight to the role of immune system functioning in SA and BD and also suggest that integrating information from multiple levels of analysis holds promise to improve risk assessment for SA in adults with BD.


Asunto(s)
Trastorno Bipolar , Adulto , Humanos , Trastorno Bipolar/genética , Epigenoma , Intento de Suicidio , Estudio de Asociación del Genoma Completo , Epigénesis Genética , Metilación de ADN
6.
Mol Psychiatry ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278994

RESUMEN

Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del/+) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and highlighted three genes within the deleted region: thousand and one amino acid protein kinase 2 (Taok2), seizure-related 6 homolog-like 2 (Sez6l2), and major vault protein (Mvp). Using CRISPR/Cas9, we generated mice carrying null mutations in Taok2, Sez6l2, and Mvp (3 gene hemi-deletion (3g del/+)). Hemi-deletion of these 3 genes recapitulates sex-specific behavioral alterations in striatum-dependent behavioral tasks observed in 16p11.2 del/+ mice, specifically male-specific hyperactivity and impaired motivation for reward seeking. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice exclusively in males. Subsequent analysis identified translation dysregulation and/or extracellular signal-regulated kinase signaling as plausible molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Interestingly, ribosomal profiling supported the notion of translation dysregulation in both 3g del/+ and 16p11.2 del/+ male mice. However, mice carrying a 4-gene deletion (with an additional deletion of Mapk3) exhibited fewer phenotypic similarities with 16p11.2 del/+ mice. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice. These results support the importance of a polygenic approach to study NDDs and underscore that the effects of the large genetic deletions result from complex interactions between multiple candidate genes.

7.
medRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546994

RESUMEN

Suicide attempt (SA) risk is elevated in individuals with bipolar disorder (BD), and DNA methylation patterns may serve as possible biomarkers of SA. We conducted epigenome-wide association studies (EWAS) of blood DNA methylation associated with BD and SA. DNA methylation was measured at > 700,000 positions in a discovery cohort of n = 84 adults with BD with a history of SA (BD/SA), n = 79 adults with BD without history of SA (BD/non-SA), and n = 76 non-psychiatric controls (CON). EWAS revealed six differentially methylated positions (DMPs) and seven differentially methylated regions (DMRs) between BD/SA and BD/non-SA, with multiple immune-related genes implicated. There were no epigenome-wide significant differences when BD/SA and BD/non-SA were each compared to CON, and patterns suggested that epigenetics differentiating BD/SA from BD/non-SA do not differentiate BD/non-SA from CON. Weighted gene co-methylation network analysis and trait enrichment analysis of the BD/SA vs. BD/non-SA contrast further corroborated immune system involvement, while gene ontology analysis implicated calcium signalling. In an independent replication cohort of n = 48 BD/SA and n = 47 BD/non-SA, fold-changes at the discovery cohort's significant sites showed moderate correlation across cohorts and agreement on direction. In both cohorts, classification accuracy for SA history among individuals with BD was highest when methylation at the significant CpG sites as well as information from clinical interviews were combined, with an AUC of 88.8% (CI = 83.8-93.8%) and 82.1% (CI = 73.6-90.5%) for the combined epigenetic-clinical predictor in the discovery and replication cohorts, respectively. Our results provide novel insight to the role of immune system functioning in SA and BD and also suggest that integrating information from multiple levels of analysis holds promise to improve risk assessment for SA in adults with BD.

8.
J Affect Disord ; 340: 269-279, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562560

RESUMEN

BACKGROUND: The neural underpinnings of bipolar disorder (BD) remain poorly understood. The cerebellum is ideally positioned to modulate emotional regulation circuitry yet has been understudied in BD. Literature suggests differences in cerebellar activity and metabolism in BD, however findings on structural differences remain contradictory. Potential reasons include combining BD subtypes, small sample sizes, and potential moderators such as genetics, adverse childhood experiences (ACEs), and pharmacotherapy. METHODS: We collected 3 T MRI scans from participants with (N = 131) and without (N = 81) BD type I, as well as blood and questionnaires. We assessed differences in cerebellar volumes and explored potentially influential factors. RESULTS: The cerebellar cortex was smaller bilaterally in participants with BD. Polygenic propensity score did not predict any cerebellar volumes, suggesting that non-genetic factors may have greater influence on the cerebellar volume difference we observed in BD. Proportionate cerebellar white matter volumes appeared larger with more ACEs, but this may result from reduced ICV. Time from onset and symptom burden were not associated with cerebellar volumes. Finally, taking sedatives was associated with larger cerebellar white matter and non-significantly larger cortical volume. LIMITATIONS: This study was cross-sectional, limiting interpretation of possible mechanisms. Most of our participants were White, which could limit the generalizability. Additionally, we did not account for potential polypharmacy interactions. CONCLUSIONS: These findings suggest that external factors, such as sedatives and childhood experiences, may influence cerebellum structure in BD and may mask underlying differences. Accounting for such variables may be critical for consistent findings in future studies.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/psicología , Estudios Transversales , Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética , Corteza Cerebelosa
9.
Neuropsychopharmacology ; 48(6): 954-962, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878995

RESUMEN

Bipolar disorder (BD) has been previously associated with premature mortality and aging, including acceleration of epigenetic aging. Suicide attempts (SA) are greatly elevated in BD and are associated with decreased lifespan, biological aging, and poorer clinical outcomes. We investigated the relationship between GrimAge, an epigenetic clock trained on time-to-death and associated with mortality and lifespan, and SA in two independent cohorts of BD individuals (discovery cohort - controls (n = 50), BD individuals with (n = 77, BD/SA) and without (n = 67, BD/non-SA) lifetime history of SA; replication cohort - BD/SA (n = 48) and BD/non-SA (n = 47)). An acceleration index for the GrimAge clock (GrimAgeAccel) was computed from blood DNA methylation (DNAm) and compared between groups with multiple general linear models. Differences in epigenetic aging from the discovery cohort were validated in the independent replication cohort. In the discovery cohort, controls, BD/non-SA, and BD/SA significantly differed on GrimAgeAccel (F = 5.424, p = 0.005), with the highest GrimAgeAccel in BD/SA (p = 0.004, BD/SA vs. controls). Within the BD individuals, BD/non-SA and BD/SA differed on GrimAgeAccel in both cohorts (p = 0.008) after covariate adjustment. Finally, DNAm-based surrogates revealed possible involvement of plasminogen activator inhibitor 1, leptin, and smoking pack-years in driving accelerated epigenetic aging. These findings pair with existing evidence that not only BD, but also SA, may be associated with an accelerated biological aging and provide putative biological mechanisms for morbidity and premature mortality in this population.


Asunto(s)
Trastorno Bipolar , Intento de Suicidio , Humanos , Longevidad , Trastorno Bipolar/complicaciones , Envejecimiento/genética , Metilación de ADN , Epigénesis Genética
10.
bioRxiv ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798381

RESUMEN

Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and identified 3 genes of particular importance within the deleted region: thousand and one amino acid protein kinase 2 ( Taok2 ), seizure-related 6 homolog-like 2 ( Sez6l2 ), and major vault protein ( Mvp ). Using the CRISPR/Cas9 technique, we generated 3 gene hemi-deletion (3g del/+) mice carrying null mutations in Taok2, Sez6l2 , and Mvp . We assessed striatum-dependent phenotypes of these 3g del/+ mice in behavioral, molecular, and imaging studies. Hemi-deletion of Taok2, Sez6l2 , and Mvp induces sex-specific behavioral alterations in striatum-dependent behavioral tasks, specifically male-specific hyperactivity and impaired motivation for reward seeking, resembling behavioral phenotypes of 16p11.2 del/+ mice. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice, but only in males. Pathway analysis identified ribosomal dysfunction and translation dysregulation as molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice, unlike single gene mutation studies. These results support the importance of a polygenic approach to study NDDs and our novel strategy to identify genes of interest using gene expression patterns in brain regions, such as the striatum, which are impacted in these disorders.

11.
Antioxidants (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453406

RESUMEN

Heterogeneity in the incidence of postoperative atrial fibrillation (POAF) following heart surgery implies that underlying genetic and/or physiological factors impart a higher risk of this complication to certain patients. Glutathione peroxidase-4 (GPx4) is a vital selenoenzyme responsible for neutralizing lipid peroxides, mediators of oxidative stress known to contribute to postoperative arrhythmogenesis. Here, we sought to determine whether GPX4 single nucleotide variants are associated with POAF, and whether any of these variants are linked with altered GPX4 enzyme content or activity in myocardial tissue. Sequencing analysis was performed across the GPX4 coding region within chromosome 19 from a cohort of patients (N = 189) undergoing elective coronary artery bypass graft (−/+ valve) surgery. GPx4 enzyme content and activity were also analyzed in matching samples of atrial myocardium from these patients. Incidence of POAF was 25% in this cohort. Five GPX4 variants were associated with POAF risk (permutated p ≤ 0.05), and eight variants associated with altered myocardial GPx4 content and activity (p < 0.05). One of these variants (rs713041) is a well-known modifier of cardiovascular disease risk. Collectively, these findings suggest GPX4 variants are potential risk modifiers and/or predictors of POAF. Moreover, they illustrate a genotype−phenotype link with this selenoenzyme, which will inform future mechanistic studies.

12.
Mol Brain ; 14(1): 125, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384474

RESUMEN

Widespread sleep deprivation is a continuing public health problem in the United States and worldwide affecting adolescents and adults. Acute sleep deprivation results in decrements in spatial memory and cognitive impairments. The hippocampus is vulnerable to acute sleep deprivation with changes in gene expression, cell signaling, and protein synthesis. Sleep deprivation also has long lasting effects on memory and performance that persist after recovery sleep, as seen in behavioral studies from invertebrates to humans. Although previous research has shown that acute sleep deprivation impacts gene expression, the extent to which sleep deprivation affects gene regulation remains unknown. Using an unbiased deep RNA sequencing approach, we investigated the effects of acute sleep deprivation on gene expression in the hippocampus. We identified 1,146 genes that were significantly dysregulated following sleep deprivation with 507 genes upregulated and 639 genes downregulated, including protein coding genes and long non-coding RNAs not previously identified as impacted by sleep deprivation. Notably, genes significantly upregulated after sleep deprivation were associated with RNA splicing and the nucleus. In contrast, downregulated genes were associated with cell adhesion, dendritic localization, the synapse, and postsynaptic membrane. Furthermore, we found through independent experiments analyzing a subset of genes that three hours of recovery sleep following acute sleep deprivation was sufficient to normalize mRNA abundance for most genes, although exceptions occurred for some genes that may affect RNA splicing or transcription. These results clearly demonstrate that sleep deprivation differentially regulates gene expression on multiple transcriptomic levels to impact hippocampal function.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Privación de Sueño/genética , Transcriptoma , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Dendritas/metabolismo , Ontología de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Biosíntesis de Proteínas , Empalme del ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Privación de Sueño/rehabilitación
13.
Mol Brain ; 13(1): 165, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272296

RESUMEN

Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.


Asunto(s)
Biosíntesis de Proteínas/genética , RNA-Seq , Ribosomas/genética , Privación de Sueño/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Femenino , Regulación de la Expresión Génica , Ratones Transgénicos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Transcriptoma/genética
14.
BMC Biol ; 18(1): 155, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121486

RESUMEN

BACKGROUND: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. RESULTS: We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. CONCLUSIONS: These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.


Asunto(s)
Proteína de Unión a CREB/genética , Ritmo Circadiano/genética , Memoria a Largo Plazo , Dominios Proteicos , Animales , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Femenino , Masculino , Ratones
15.
J Psychiatr Res ; 121: 151-158, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31830721

RESUMEN

We previously conducted a genome-wide association study (GWAS) of attempted suicide within bipolar disorder, which implicated common variation in the 2p25 region primarily in males. The top association signal from our GWAS occurred in an intergenic region of 2p25 (p = 5.07 × 10-8) and was supported by two independent studies. In the current study, to better characterize the association of the 2p25 region with attempted suicide, we sequenced the entire 350kb 2p25 region in 476 bipolar suicide attempters and 473 bipolar non-attempters using targeted next-generation sequencing. This fine-mapping project identified 4,681 variants in the 2p25 region. We performed both gene-level and individual-variant tests on our sequencing results and identified 375 variants which were nominally significant (p < 0.05) and three common variants that were significantly associated with attempted suicide in males (corrected p = 0.035, odds ratio (OR) = 2.13). These three variants are in strong linkage disequilibrium with the top variant from our GWAS. Our top five variants are also predicted expression quantitative trait loci (eQTL) for three genes in the 2p25 region based on publicly available brain expression databases. Our sequencing and eQTL data implicate these three genes - SH3YL1, ACP1, and FAM150B - and three additional pathways - androgen receptor, Wnt signaling, and glutamatergic/GABAergic signaling - in the association of the 2p25 region with suicide. The current study provides additional support for an association of the 2p25 region with attempted suicide in males and identifies several candidate genes and pathways that warrant further investigation to understand their role in suicidal behavior.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Cromosomas Humanos Par 2/genética , Transducción de Señal/genética , Intento de Suicidio , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Factores Sexuales , Adulto Joven
16.
Am J Med Genet B Neuropsychiatr Genet ; 183(2): 128-139, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31854516

RESUMEN

Glutamatergic signaling is the primary excitatory neurotransmission pathway in the brain, and its relationship to neuropsychiatric disorders is of considerable interest. Our previous attempted suicide genome-wide association study, and numerous studies investigating gene expression, genetic variation, and DNA methylation have implicated aberrant glutamatergic signaling in suicide risk. The glutamatergic pathway gene LRRTM4 was an associated gene identified in our attempted suicide genome-wide association study, with association support seen primarily in females. Recent evidence has also shown that glutamatergic signaling is partly regulated by sex-related hormones. The LRRTM gene family encodes neuronal leucine-rich transmembrane proteins that localize to and promote glutamatergic synapse development. In this study, we sequenced the coding and regulatory regions of all four LRRTM gene members plus a large intronic region of LRRTM4 in 476 bipolar disorder suicide attempters and 473 bipolar disorder nonattempters. We identified two male-specific variants, one female- and five male-specific haplotypes significantly associated with attempted suicide in LRRTM4. Furthermore, variants within significant haplotypes may be brain expression quantitative trait loci for LRRTM4 and some of these variants overlap with predicted hormone response elements. Overall, these results provide supporting evidence for a sex-specific association of genetic variation in LRRTM4 with attempted suicide.


Asunto(s)
Trastorno Bipolar/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Suicidio/psicología , Adulto , Trastorno Bipolar/complicaciones , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Femenino , Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Haplotipos/genética , Humanos , Proteínas Repetidas Ricas en Leucina , Masculino , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas/genética , Proteínas/metabolismo , Ideación Suicida , Suicidio/tendencias , Intento de Suicidio/psicología
17.
Am J Med Genet B Neuropsychiatr Genet ; 180(7): 496-507, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31350827

RESUMEN

The addition of a methyl group to, typically, a cytosine-guanine dinucleotide (CpG) creates distinct DNA methylation patterns across the genome that can regulate gene expression. Aberrant DNA methylation of CpG sites has been associated with many psychiatric disorders including bipolar disorder (BD) and suicide. Using the SureSelectXT system, Methyl-Seq, we investigated the DNA methylation status of CpG sites throughout the genome in 50 BD individuals (23 subjects who died by suicide and 27 subjects who died from other causes) and 31 nonpsychiatric controls. We identified differentially methylated regions (DMRs) from three analyses: (a) BD subjects compared to nonpsychiatric controls (BD-NC), (b) BD subjects who died by suicide compared to nonpsychiatric controls (BDS-NC), and (c) BDS subjects compared to BD subjects who died from other causes (BDS-BDNS). One DMR from the BDS-NC analysis, located in ARHGEF38, was significantly hypomethylated (23.4%) in BDS subjects. This finding remained significant after multiple testing (PBootstrapped = 9.0 × 10-3 ), was validated using pyrosequencing, and was more significant in males. A secondary analysis utilized Ingenuity Pathway Analysis to identify enrichment in nominally significant DMRs. This identified an association with several pathways including axonal guidance signaling, calcium signaling, ß-adrenergic signaling, and opioid signaling. Our comprehensive study provides further support that DNA methylation alterations influence the risk for BD and suicide. However, further investigation is required to confirm these associations and identify their functional consequences.


Asunto(s)
Trastorno Bipolar/genética , Metilación de ADN/genética , Suicidio/psicología , Islas de CpG/genética , Epigénesis Genética/genética , Femenino , Genoma/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética
18.
Front Neural Circuits ; 12: 14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535611

RESUMEN

Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.


Asunto(s)
Epigénesis Genética , Privación de Sueño/metabolismo , Animales , Humanos , Privación de Sueño/genética
19.
Oncotarget ; 8(39): 66061-66074, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029492

RESUMEN

The t(12;21) (p13;q22) chromosomal translocation resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality in children with acute lymphoblastic leukemia (ALL). The erythropoietin receptor (EPOR), usually associated with erythroid progenitor cells, is highly expressed in ETV6/RUNX1 positive cases compared to other B-lineage ALL subtypes. Gene expression analysis of a microarray database and direct quantitative analysis of patient samples revealed strong correlation between EPOR and GATA2 expression in ALL, and higher expression of GATA2 in t(12;21) patients. The mechanism of EPOR regulation was mainly investigated using two B-ALL cell lines: REH, which harbor and express the ETV6/RUNX1 fusion gene; and NALM-6, which do not. Expression of EPOR was increased in REH cells compared to NALM-6 cells. Moreover, of the six GATA family members only GATA2 was differentially expressed with substantially higher levels present in REH cells. GATA2 was shown to bind to the EPOR 5'-UTR in REH, but did not bind in NALM-6 cells. Overexpression of GATA2 led to an increase in EPOR expression in REH cells only, indicating that GATA2 regulates EPOR but is dependent on the cellular context. Both EPOR and GATA2 are hypomethylated and associated with increased mRNA expression in REH compared to NALM-6 cells. Decitabine treatment effectively reduced methylation of CpG sites in the GATA2 promoter leading to increased GATA2 expression in both cell lines. Although Decitabine also reduced an already low level of methylation of the EPOR in NALM-6 cells there was no increase in EPOR expression. Furthermore, EPOR and GATA2 are regulated post-transcriptionally by miR-362 and miR-650, respectively. Overall our data show that EPOR expression in t(12;21) B-ALL cells, is regulated by GATA2 and is mediated through epigenetic, transcriptional and post-transcriptional mechanisms, contingent upon the genetic subtype of the disease.

20.
Mol Neuropsychiatry ; 3(1): 1-11, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28879196

RESUMEN

Suicidal behavior is a complex and devastating phenotype with a heritable component that has not been fully explained by existing common genetic variant analyses. This study represents the first large-scale DNA sequencing project designed to assess the role of rare functional genetic variation in suicidal behavior risk. To accomplish this, whole-exome sequencing data for ∼19,000 genes were generated for 387 bipolar disorder subjects with a history of suicide attempt and 631 bipolar disorder subjects with no prior suicide attempts. Rare functional variants were assessed in all exome genes as well as pathways hypothesized to contribute to suicidal behavior risk. No result survived conservative Bonferroni correction, though many suggestive findings have arisen that merit additional attention. In addition, nominal support for past associations in genes, such as BDNF, and pathways, such as the hypothalamic-pituitary-adrenal axis, was also observed. Finally, a novel pathway was identified that is driven by aldehyde dehydrogenase genes. Ultimately, this investigation explores variation left largely untouched by existing efforts in suicidal behavior, providing a wealth of novel information to add to future investigations, such as meta-analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...