Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care ; 28(1): 17, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191420

RESUMEN

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.


Asunto(s)
Sepsis , Choque Séptico , Receptor Activador Expresado en Células Mieloides 1 , Animales , Humanos , Citocinas , Sepsis/tratamiento farmacológico , Receptor Activador Expresado en Células Mieloides 1/metabolismo
2.
Front Oncol ; 12: 1010660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387148

RESUMEN

Introduction: PD-(L)1 inhibitors (IO) have improved the prognosis of non-small-cell lung cancer (NSCLC), but more reliable predictors of efficacy and immune-related adverse events (irAE) are urgently needed. Cytokines are important effector molecules of the immune system, whose potential clinical utility as biomarkers remains unclear. Methods: Serum samples from patients with advanced NSCLC receiving IO either alone in the first (1L, n=46) and subsequent lines (n=50), or combined with chemotherapy (ICT, n=108) were analyzed along with age-matched healthy controls (n=15) at baseline, after 1 and 4 therapy cycles, and at disease progression (PD). Patients were stratified in rapid progressors (RP, progression-free survival [PFS] <120 days), and long-term responders (LR, PFS >200 days). Cytometric bead arrays were used for high-throughput quantification of 20 cytokines and other promising serum markers based on extensive search of the current literature. Results: Untreated NSCLC patients had increased levels of various cytokines and chemokines, like IL-6, IL-8, IL-10, CCL5, G-CSF, ICAM-1, TNF-RI and VEGF (fold change [FC]=1.4-261, p=0.026-9x10-7) compared to age-matched controls, many of which fell under ICT (FC=0.2-0.6, p=0.014-0.002), but not under IO monotherapy. Lower baseline levels of TNF-RI were associated with longer PFS (hazard ratio [HR]= 0.42-0.54; p=0.014-0.009) and overall survival (HR=0.28-0.34, p=0.004-0.001) after both ICT and IO monotherapy. Development of irAE was associated with higher baseline levels of several cytokines, in particular of IL-1ß and angiogenin (FC=7-9, p=0.009-0.0002). In contrast, changes under treatment were very subtle, there were no serum correlates of radiologic PD, and no association between dynamic changes in cytokine concentrations and clinical outcome. No relationship was noted between the patients' serologic CMV status and serum cytokine levels. Conclusions: Untreated NSCLC is characterized by increased blood levels of several pro-inflammatory and angiogenic effectors, which decrease under ICT. Baseline serum cytokine levels could be exploited for improved prediction of subsequent IO benefit (in particular TNF-RI) and development of irAE (e.g. IL-1ß or angiogenin), but they are not suitable for longitudinal disease monitoring. The potential utility of IL-1/IL-1ß inhibitors in the management and/or prevention of irAE in NSCLC warrants investigation.

3.
Respiration ; : 1-27, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33291116

RESUMEN

Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.

4.
Cells ; 9(9)2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937956

RESUMEN

Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Animales , Antígenos de Neoplasias/inmunología , Ingeniería Celular/métodos , Humanos , Microambiente Tumoral/inmunología
5.
Cancers (Basel) ; 12(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340408

RESUMEN

Oligoprogression (OPD) of non-small-cell lung cancer (NSCLC) occurs in approximately half of patients under targeted compounds (TKI) and facilitates use of regional therapies that can prolong survival. In order to characterize OPD in immunotherapy (IO)-treated NSCLC, we analyzed the failure pattern under PD-1/PD-L1 inhibitors (n = 297) or chemoimmunotherapy (n = 75). Under IO monotherapy, OPD was more frequent (20% vs. 10%, p < 0.05), occurred later (median 11 vs. 5 months, p < 0.01), affected fewer sites (mean 1.1 vs. 1.5, p < 0.05), and involved fewer lesions (1.4 vs. 2.3, p < 0.05) in the first compared to later lines. Lymph nodes (42%, mainly mediastinal) and the brain (39%) were mostly affected, followed by the lung (24%) and other organs. Compared to multifocal progression, OPD occurred later (11 vs. 4 months, p < 0.001) and was associated with longer survival (26 vs. 13 months, p < 0.001) and higher tumor PD-L1 expression (p < 0.001). Chemoimmunotherapy showed a similar incidence of OPD as IO monotherapy (13% vs. 11% at 2 years). Local treatments were applied regularly for brain but only in 50% for extracranial lesions. Thus, NSCLC oligoprogression is less common under IO than under TKI, but also favorable. Since its frequency drops later in the disease, regular restaging and multidisciplinary evaluation are essential in order to exploit the full therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...