Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 26(8): 1291-1304, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349237

RESUMEN

The disposal of fly ash (FA) from coal power plants polluting the air, soil, and groundwater is a major environmental concern. Phytoremediation to rehabilitate fly ash dumpsites is a promising alternative but has practical concerns about the disposal of harvested biomass. This study investigated the effect of supplementing fly ash with fresh sewage sludge (FSS), aged sewage sludge, food waste, and compost (COM) to enhance the phytoremediation potential of Napier grass and its subsequent utilization for ethanol production. The highest removal of Mn (1196.12 g ha-1) and Ni (128.06 g ha-1) from FA could be obtained when Napier is grown in the presence of FSS and inorganic fertilizer (NPK). In addition, the highest bioethanol yield (19.31 g L-1) was obtained from Napier grown in fly ash with COM + NPK, thus providing additional economic benefits aside from the remediation process. Given the significant levels of heavy metals present in the pulp and bio-slurry after ethanol production, further research is required in this area to determine the best ways to utilize this waste such as converting it into biochar.


Using energy crops as a phytoremediation agent for fly ash dumpsites has the potential to remediate heavy metal contamination and provide additional economic benefits. Napier grass was able to tolerate high concentrations of heavy metals and yield high biomass in fly ash in the presence of organic amendments. The harvested biomass was successfully converted into substrate for bioethanol production using heavy metal-tolerant yeast. This is the first report on the production of ethanol from the phytoremediation biomass of Napier grass.


Asunto(s)
Biodegradación Ambiental , Ceniza del Carbón , Pennisetum , Pennisetum/metabolismo , Fertilizantes , Metales Pesados/metabolismo , Aguas del Alcantarillado , Residuos Industriales , Etanol/metabolismo
2.
Environ Geochem Health ; 44(5): 1633-1648, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33855629

RESUMEN

The impact of BCL Cu-Ni mines on the surrounding environment has indicated high levels of heavy metal contamination in soil and some plant species. A comprehensive assessment of heavy metal concentration in plants, heavy metal concentration and availability in soils, and the estimates of risk associated with grazing animals in the area are presented. Exhaustive quantification of heavy metal contents in 82 plant samples revealed that some plants such as Boscia albitrunca and Boscia foetida are suitable for multi-metal phytoextraction, and others can accumulate one or two of the metals in soils or tolerate high levels of contamination. Current levels of soil contamination were manifested by acidification and high electrical conductivity, high contamination factor, and a pollution index between 8.31 and 10.79. The amount of exchangeable fractions of metals was higher than ordinary soils which is attributed to the high solubility of deposited materials on the soil surfaces. Daily intake estimates showed a possible risk associated with Pb and Cu contamination among grazing animals in the study area. Overall, the information has identified potential plants or combination of plants that could be utilized for the rehabilitation of the study area through phytoremediation. In addition, the estimates of the daily intake of the minerals due to consumption of plants in the vicinity of the BCL mines warrant for evaluation of the actual levels of heavy metals in grazing animals near the study area and in other mining areas in Botswana.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Botswana , China , Monitoreo del Ambiente , Metales Pesados/análisis , Plantas , Medición de Riesgo , Rumiantes , Suelo , Contaminantes del Suelo/análisis
3.
Environ Sci Pollut Res Int ; 28(16): 20637-20649, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33405121

RESUMEN

Discarding fly ash from a coal power plant into a dumpsite does not only contribute to deforestation and loss of productive land but also leads to contamination of air, soil, and groundwater. Therefore, fly ash should be managed properly to avoid the migration of contaminants. One management option is phytoremediation using adapted plants and as a prerequisite, there is a need to identify suitable plants that can be used for revegetation of fly ash dumpsites. To identify prospective plants, a survey was carried out by assessing the plants growing in Morupule B fly ash dumpsite based on their ability to accumulate heavy metals and their bioconcentration (BAF) and translocation factors (TF). Of the twenty-two-plant species growing in the fly ash dumpsite of Morupule B power plant station, N. glauca is a potential phytoextraction agent for Cu (TFCu = 1.02; BAFCu = 2.16) and Pb (TFPb = 1.38; BAFPb = 1.65); P. burchellii for Pb (TFPb = 1.61, BAFPb = 0.9) and Zn (TFZn = 1.35; BAFZn = 5.74); I. pes-tigridis for Pb (TFPb = 1.35; BAFPb = 1.56) and Zn (TFZn = 1.62; BAFZn = 7.43); A. pungens for Cr (TFCr = 1.22; BAFCr = 0.11), Cu (TFCu = 2.18; BAFCu = 1.14), and Zn (TFZn = 1.04; BAFZn = 1.44); E. hirta for Zn (TFZn = 1.54, BAFZn = 2.44); A. spinosus for Pb (TFPb = 1.29; BAFPb = 1.55); C. dactylon for Cu (TFCu = 1.86; BAFCu = 1.07) and Zn (TFZn = 1.00; BAFZn = 2.46); and D. aegyptium for Pb (TFPb = 1.19; BAFPb = 2.57). Other plants growing in the fly ash dumpsite are potential candidates for phytostabilization as they can tolerate a high concentration of metals and low essential nutrients. Also, different plant groups variably modified the pH, EC, OM, and exchangeable fractions of metals in the rhizosphere wherein grasses can increase the OM at higher rates, and it has a higher capacity to acidify and solubilize heavy metals in the rhizosphere leading to higher EC and available metals compared to other plant groups. Overall, the information presented is useful in identifying plants or their combinations for the phytoremediation of fly ash and other heavy metal-polluted environments.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Botswana , Ceniza del Carbón , Metales Pesados/análisis , Centrales Eléctricas , Rizosfera , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...