Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1383495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699430

RESUMEN

With a prevalence of 12.5% of all new cancer cases annually, breast cancer stands as the most common form of cancer worldwide. The current therapies utilized for breast cancer are constrained and ineffective in addressing the condition. siRNA-based gene silencing is a promising method for treating breast cancer. We have developed an aptamer-conjugated dendritic multilayered nanoconjugate to treat breast cancer. Initially, we transformed the hydroxyl groups of the hyperbranched bis-MPA polyester dendrimer into carboxylic groups. Subsequently, we linked these carboxylic groups to tetraethylenepentamine to form a positively charged dendrimer. In addition, the mucin-1 (MUC1) aptamer was attached to the dendrimer using a heterobifunctional polyethylene glycol. Characterizing dendrimers involved 1H NMR and dynamic light scattering techniques at every production stage. A gel retardation experiment was conducted to evaluate the successful binding of siRNA with targeted and non-targeted dendrimers. The targeted dendrimers exhibited no harmful effects on the NIH-3T3 fibroblast cells and RBCs, indicating their biocompatible characteristics. Confocal microscopy demonstrated significant higher uptake of targeted dendrimers than non-targeted dendrimers in MCF-7 breast cancer cells. The real-time PCR results demonstrated that the targeted dendrimers exhibited the most pronounced inhibition of the target gene expression compared to the non-targeted dendrimers and lipofectamine-2000. The caspase activation study confirmed the functional effect of survivin silencing by dendrimer, which led to the induction of apoptosis in breast cancer cells. The findings indicated that Mucin-1 targeted hyperbranched bis-MPA polyester dendrimer carrying siRNA could successfully suppress the expression of the target gene in breast cancer cells.

2.
3 Biotech ; 14(3): 64, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38344285

RESUMEN

In the present study, we isolated a potent endophytic fungus from the roots of Withania somnifera. The endophytic fungal strain was authenticated as Penicillium ramusculum SVWS3 based on morphological and molecular sequencing using four gene data and phylogenetic analyses. In vitro cytotoxicity studies unveiled the remarkable cytotoxic potential of the crude extract derived from P. ramusculum, exhibiting dose-dependent effects on MDA-MB-468 and MCF-7 cells. At a concentration of 100 µg/mL, the crude extract resulted in cell viability of 29.78% for MDA-MB-468 cells and 14.61% for MCF-7 cells. The IC50 values were calculated as 62.83 ± 0.93 µg/mL and 17.23 ± 1.43 µg/mL, respectively for MDA-MB-468 and MCF-7 cells. Caspase activation assay established the underlying mechanism of the crude extract depicting the activation of caspases 3 and 7, indicating the induction of apoptosis in MCF-7 cells. Chemotaxonomic profiling elucidated the ability of P. ramusculum to synthesize a diverse array of bioactive compounds, including Fasoracetam, Tryprostatin B, Odorinol, Thyronine, Brevianamide F, Proglumide, Perlolyrine, Tyrphostin B48, Baptifoline, etc. Molecular docking studies inferred that Baptifoline, Brevianamide F, Odorinol, Perlolyrine, Thyronine, Tryphostin B48, and Tryprostatin B were the lead compounds that could effectively interact with the five selected target receptors of breast cancer, further surpassing the positive controls analyzed. Pharmacokinetic profiling revealed that Baptifoline, Odorinol, and Thyronine depicted an excellent therapeutic profile of druggability. These findings collectively substantiate the anticancer activity of bioactive metabolites synthesized by P. ramusculum SVWS3. Hence, the endophytic P. ramusculum SVWS3 can be an authentic source for developing novel chemotherapeutic drug formulations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03906-3.

3.
Mol Cancer ; 22(1): 160, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784179

RESUMEN

Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Liposomas/uso terapéutico , Polímeros/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Portadores de Fármacos , Lípidos/uso terapéutico
4.
Biomater Res ; 27(1): 42, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149607

RESUMEN

The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.

5.
Int J Pharm ; 637: 122894, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36990168

RESUMEN

The therapeutics available for cancer treatment have the major hurdle of site-specific delivery of anti-cancer drugs to the tumor site and non-target specific side effects. The standard therapy for ovarian cancer still poses numerous pitfalls due to the irrational use of drugs affecting healthy cells. As an appealing approach, nanomedicine could revamp the therapeutic profile of anti-cancer agents. Owing to the low manufacturing cost, increased biocompatibility, and modifiable surface properties, lipid-based nanocarriers, particularly solid lipid nanoparticles (SLN), have remarkable drug delivery properties in cancer treatment. Given the extra-ordinary benefits, we developed anti-neoplastic (paclitaxel) drug-loaded SLN (PTX-SLN) and functionalized with N-acetyl-d-glucosamine (GLcNAc) (GLcNAc-PTX-SLN) to reduce the rate of proliferation, growth, and metastasis of ovarian cancer cells over-expressing GLUT1 transporters. The particles presented considerable size and distribution while demonstrating haemocompatibility. Using GLcNAc modified form of SLNs, confocal microscopy, MTT assay, and flow cytometry study demonstrated higher cellular uptake and significant cytotoxic effect. Also, molecular docking results established excellent binding affinity between GLcNAc and GLUT1, complimenting the feasibility of the therapeutic approach in targeted cancer therapy. Following the compendium of target-specific drug delivery by SLN, our results demonstrated a significant response for ovarian cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Portadores de Fármacos/química , Transportador de Glucosa de Tipo 1 , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Paclitaxel , Neoplasias Ováricas/tratamiento farmacológico , Nanopartículas/química , Proteínas de Transporte de Membrana
6.
J Pharm Sci ; 112(5): 1450-1459, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36669561

RESUMEN

Ovarian cancer is the leading cause of cancer deaths in female patients. The current therapeutics in ovarian cancer are limited and inefficient in curing the disease. To tackle this, we have synthesized tetrasulfide derivative of silica doped, biodegradable, glutathione-responsive targeted mesoporous silica nanoparticles modified with heterobifunctional polyethylene glycol as a linker and mucin-1 aptamer for triggered paclitaxel delivery to the ovarian cancer cells. Degradable mesoporous silica nanoparticles were synthesized by a modified sol-gel method with tetraethyl orthosilicate and Bis (triethoxysilylpropyl) tetrasulfide. The degradable mesoporous silica nanoparticles were characterized by dynamic light scattering, Fourier-transform infrared spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The degradable mesoporous silica nanoparticles had good paclitaxel encapsulation efficiency and glutathione-responsive paclitaxel release ability. The glutathione utilization assay and visual destruction observed within 10 days in transmission electron microscopy images confirmed the degradation of the mesoporous silica nanoparticles in the tumor cell environment. The targeted degradable mesoporous silica nanoparticles were efficiently taken up by ovarian cancer cell lines OVACAR-3 and PA-1. The cytotoxicity of bare mesoporous silica nanoparticles evaluated on NIH-3T3 cell line showed good biocompatibility (>90% cell viability). Significant toxicity on OVACAR-3 (IC50 25.66 nM) and PA-1 (IC50 42.93 nM) cell lines was observed when treated with paclitaxel-loaded targeted degradable mesoporous silica nanoparticles. Results of this study demonstrated that mucin-1 targeted, glutathione-responsive mesoporous silica nanoparticles loaded with paclitaxel had a significant antitumor effect on ovarian cancer cells. All these findings demonstrated that developed nano-formulation could be suitable for ovarian cancer treatment.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Paclitaxel/farmacología , Doxorrubicina , Mucina-1 , Dióxido de Silicio/química , Neoplasias Ováricas/tratamiento farmacológico , Glutatión , Nanopartículas/química , Porosidad , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Portadores de Fármacos/química
7.
Int J Pharm ; 634: 122659, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36720446

RESUMEN

The setback in the practical clinical use of RNA interference (RNAi)-based cancer treatment stems from the lack of targeted small interfering RNA (siRNA) delivery. Here, we show that luteinizing hormone-releasing hormone(LHRH) analog-tethered multi-layered polyamidoamine (PAMAM) nanoconstructs silence the anti-apoptotic MCL-1 gene in LHRH receptor overexpressing human breast (MCF-7) and prostate cancer (LNCaP) cells with 70.91 % and 74.10 % efficiency, respectively. These results were confirmed by RT-PCR. The Acridine orange/Ethidium bromide (AO/EB) dual staining revealed that the silencing of MCL-1 induced apoptosis in both the cell lines. In vivo tumor regression studies performed using MCF-7 and LNCaP xenografted severe combined immunodeficiency(SCID) mice demonstrated highly improved tumor regression in groups treated with targeted nanoconstructs complexed with MCL-1 siRNA (T + siMCL-1) compared to the other treatment groups. The quantitative RT-PCR results of tumor tissues demonstrated significant MCL-1 gene silencing, i.e., 73.76 % and 92.63 % in breast and prostate tumors, respectively, after T + siMCL-1 treatment. Reduction in MCL-1 protein expression as assessed by immunohistochemistry further confirmed these results. Furthermore, the caspase 3/7 assay demonstrated apoptosis in the MCL-1 silenced tissues. The study strongly suggests that targeted delivery of siRNAs using multi-layered dendrimer nanostructures could be an effective therapy for LHRH overexpressing cancers.


Asunto(s)
Dendrímeros , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Apoptosis , Línea Celular Tumoral , Dendrímeros/química , Hormona Liberadora de Gonadotropina/farmacología , Ratones SCID , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , ARN Interferente Pequeño
8.
J Nanobiotechnology ; 21(1): 19, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658575

RESUMEN

BACKGROUND: The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS: TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS: We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Fármacos Anti-VIH , Infecciones por VIH , Nanopartículas del Metal , Humanos , Tenofovir/farmacología , Tenofovir/uso terapéutico , Oro/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Fármacos Anti-VIH/farmacología , Distribución Tisular , Infecciones por VIH/tratamiento farmacológico , Péptido Hidrolasas/uso terapéutico
9.
Int J Biol Macromol ; 229: 600-614, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586658

RESUMEN

The emergence of drug resistance in cancer cells is among the major challenges for treating cancer. In the last few years, the co-delivery of drug and siRNA has shown promising results against drug-resistant cancers. In the present study, we developed mesoporous silica-based multifunctional nanocarrier for co-delivery against drug-resistant triple-negative breast cancer (TNBC) cells. We synthesized the nanocarrier by modifying mesoporous silica nanoparticles with poly-L-arginine, polyethylene glycol and AS1411 aptamer to impart siRNA binding ability, biocompatibility, and cancer cell specificity, respectively. We optimized the loading of doxorubicin (DOX) within the developed nanocarrier to avoid interference with siRNA binding. We ascertained the target specificity by performing a receptor blockade assay during cellular uptake studies. The cytotoxic efficacy of DOX and siRNA co-delivered using the developed nanocarrier was assessed using DOX-resistant MDA-MB-231 TNBC cells. The nanocarrier exhibited >10-fold and 40-fold reduction in the IC50 values of DOX due to co-delivery with BCl-xL and BCL-2 siRNA, respectively. The results were further validated using a 3-D in vitro cell culture system. This study demonstrates that the targeted co-delivery of drug and siRNA has a strong potential to overcome drug resistance in TNBC cells.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Dióxido de Silicio , Resistencia a Medicamentos , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Línea Celular Tumoral , Nucleolina
10.
Chem Phys Lipids ; 250: 105258, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375540

RESUMEN

The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.


Asunto(s)
Neoplasias de la Mama , Liposomas , Humanos , Femenino , Liposomas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanotecnología
11.
Biomimetics (Basel) ; 7(4)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36412734

RESUMEN

Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.

12.
J Control Release ; 346: 328-354, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452764

RESUMEN

Dendrimers have been comprehensively used for cargo delivery, nucleic acid delivery (genes, miRNA/siRNAs), delivery of macromolecules, and other various biomedical applications. Dendrimers are highly versatile in function and can be engineered as multifunctional biomacromolecules by modifying the surface for fulfilling different applications. Dendrimers are being used for crosslinking of existing synthetic and natural polymeric scaffolds to regulate their binding efficiency, stiffness, biocompatibility, transfection, and many other properties to mimic the in vivo extracellular matrix in tissue engineering and regenerative medicine (TERM). Dendritic inter-cellular linkers can enhance the linkages between cells and result in scaffold-independent tissue constructs. Effectively engineered dendrimers are the ideal molecules for delivering bioactive molecules such as cytokines, chemokines, growth factors, etc., and other metabolites for efficaciously regulating cell behavior. Dendrimeric nanostructures have shown tremendous results in various TERM fields like stem cells survival, osteogenesis, increased crosslinking for eye and corneal repair, and proliferation in cartilage. This review highlights the role and various aspects of dendritic polymers for TERM in general and with respect to specific tissues. This review also covers novel explorations and insights into the use of dendrimers in TERM, focusing on the developments in the past decade and perspective of the future.


Asunto(s)
Dendrímeros , Nanoestructuras , Dendrímeros/química , Nanoestructuras/química , Polímeros , Medicina Regenerativa , Ingeniería de Tejidos/métodos
13.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112174, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34742022

RESUMEN

Conventional immunoassays such as ELISA and FLISA have been used for clinical diagnosis for a long time. These assays are complex, time-consuming, and uneconomical. They have been overwhelmed with newer and more efficient methods such as electrochemical and electrochemiluminescent immunosensors that are cost-effective and require less time. Immunosensor is a biosensor that consists of a signal transducer and a biologically interactive system such as antigen and antibody interaction. Recent advances in nanotechnology have seen numerous efforts towards the usage of nanoparticles such as dendrimers in immunoassays. Dendrimers are highly branched structures with a high density of active peripheral groups, expanding their wide range of applications in immunoassays. A vast number of peripheral groups enrich the sensitivity of the immunosensor by governing the orientation of the antibody on the sensor surface. The current review highlights recent progress and developments in applying dendrimers for different immunoassays and their applicability in analyzing various biomarkers in clinical disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Dendrímeros , Técnicas Electroquímicas , Inmunoensayo , Pruebas Inmunológicas
14.
J Cardiovasc Pharmacol ; 78(6): 773-781, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882110

RESUMEN

ABSTRACT: Myocardial infarction is a substantial contributor to ischemic heart diseases, affecting a large number of people leading to fatal conditions worldwide. MicroRNAs (miRNAs) are explicitly emerging as excellent modulators of pathways involved in maintaining cardiomyocyte survival, repair, and regeneration. Altered expression of genes in cardiomyocytes postinfarction can lead to the disordered state of the myocardium, such as cardiac hypertrophy, ischemia-reperfusion injury, left ventricular remodeling, and cardiac fibrosis. Therapeutic targeting of miRNAs in cardiomyocytes can potentially reverse the adverse effects in the heart postinfarction. This review aims to understand the role of several miRNAs involved in the regeneration and repair of cardiomyocytes postmyocardial infarction and presents comprehensive information on the subject.


Asunto(s)
MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Animales , Biomarcadores/metabolismo , Fibrosis , Regulación de la Expresión Génica , Terapia Genética , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocardio/patología , Valor Predictivo de las Pruebas , Recuperación de la Función , Regeneración , Transducción de Señal , Función Ventricular Izquierda , Remodelación Ventricular
15.
Mater Sci Eng C Mater Biol Appl ; 124: 112084, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947574

RESUMEN

The pre-mature release of therapeutic cargos in the bloodstream or off-target sites is a major hurdle in drug delivery. However, stimuli-specific drug release responses are capable of providing greater control over the cargo release. Herein, various types of nanocarriers have been employed for such applications. Among various types of nanoparticles, mesoporous silica nanoparticles (MSNPs) have several attractive characteristics, such as high loading capacity, biocompatibility, small size, porous structure, high surface area, tunable pore size and ease of functionalization of the external and internal surfaces, which facilitates the entrapment and development of stimuli-dependent release of drugs. MSNPs could be modified with such stimuli-responsive entities like nucleic acid, peptides, polymers, organic molecules, etc., to prevent pre-mature cargo release, improving the therapeutic outcome. This controlled drug release system could be modulated to function upon extracellular or intracellular specific stimuli, including pH, enzyme, glucose, glutathione, light, temperature, etc., and thus provide minimal side effects at non-target sites. This system has great potential applications for the targeted delivery of therapeutics to treat clinically challenging diseases like cancer. This review summarizes the synthesis and design of stimuli-responsive release strategies of MSNP-based drug delivery systems along with investigations in biomedical applications.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Porosidad
16.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33872827

RESUMEN

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Distribución Tisular
17.
Int J Biol Macromol ; 181: 169-179, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33775757

RESUMEN

Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.


Asunto(s)
Clorhidrato de Erlotinib/farmacología , Nanocompuestos/química , beta-Glucanos/química , Células A549 , Acrilamidas/síntesis química , Acrilamidas/química , Adsorción , Bentonita/síntesis química , Bentonita/química , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mucinas/metabolismo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Coloración y Etiquetado , Electricidad Estática , Temperatura , Termogravimetría , Difracción de Rayos X
18.
Nanotechnology ; 32(8): 085603, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33263309

RESUMEN

Detection of bacterial pathogens is the need of the hour due to the increase in antibiotic resistance and the infusion of multi-drug-resistant parasites. The conventional strategies such as ELISA, PCR, and MNP based tests for the detection are efficient but they are cost, time, lab, and manpower intensive. Thus, warranting a simple and effective technique for rapid detection of bacterial pathogens. Magnetic nanoparticles (NPs) have proved to be better alternatives for separation of bacterial pathogens from a variety of sample sources. However, the use of magnetic NPs has not been successful in the detection of these parasites. The current work involves the coating of magnetic NPs (Fe3O4) with a conducting polymer (polypyrrole; Ppy) to facilitate simultaneous separation and detection. Electrical (conductivity) measurement was the mode of choice due to the sensitivity, accuracy, and ease it offers. To enhance the conductivity, carboxylic groups were expressed on the Fe3O4@Ppy complex and to ensure specificity, E. coli specific antibodies were conjugated. The resulting complex at various process parameters was characterized using FTIR, VSM, and SEM. SEM images were recorded to ensure bacterial separation at optimal process parameters. The impedance analysis and conductivity measurements were carried out for the sample volume of 15 µl. The bacterial suspension from 101-106 CFU ml-1 was successfully detected with a limit of detection of 10 CFU ml-1 within 10 min using a simplistic detection method.


Asunto(s)
Técnicas Bacteriológicas/métodos , Escherichia coli/aislamiento & purificación , Nanopartículas Magnéticas de Óxido de Hierro/química , Polímeros/química , Pirroles/química , Anticuerpos Antibacterianos/química , Anticuerpos Inmovilizados/química , Técnicas Biosensibles , Conductividad Eléctrica , Escherichia coli/inmunología , Límite de Detección , Tamaño de la Partícula , Propiedades de Superficie
19.
Int J Pharm ; 588: 119781, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822781

RESUMEN

Polyurethanes (PUs) constitute an essential class of stimuli-responsive and biodegradable material, which has significantly contributed to the advancement of polymers utilization in the biomedical field. The bio-erodible PUs construct an active corridor for facilitating drug into tumor cells, which has significantly impacted the progression of nano-micellar delivery systems. The self-assembledcolloidal PUs pose distinctive features such as enhancing the solubility of hydrophobic chemotherapeutics, rapid cellular uptake, triggered erosion and drug release, bio-stimulus sensitivity, improvement in the targeting and proficiency ofbioactive. Cationic PUs can easily be condensed with genetic material to form polyplexes and have shown excellent transfection efficiency for potential gene therapy against various cancers. Their modifiable chemistry offers a tool to impart the desired multifunctionality such as biocompatibility, sensitivity to pH, redox, temperature, enzyme, etc. and ligand conjugation for active targeting. These diverse exceptional properties make them excellent nano-carrier for a variety of bioactive, including chemotherapeutic drugs, DNA, RNA, and diagnostic moieties to the target tissue or cells. The PUs based nano-devices have certainly uncovered the path to achieve ideal systems for controlled personalized therapy. The literature discussed in this review shed light on the research innovations carried out in the last ten years for the development of multifunctional PUs for triggered delivery of bioactive to treat various cancers.


Asunto(s)
Neoplasias , Poliuretanos , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Micelas , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico
20.
Colloids Surf B Biointerfaces ; 194: 111227, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32629364

RESUMEN

The objectives of this study were to reduce the cytotoxic effect of nevirapine (NVP) and to enhance its anti-HIV efficacy through mesoporous silica nanoparticles (MSNPs) mediated delivery. MSNPs were synthesized and characterized by various techniques. Confocal microscopy and flow cytometry results exhibited efficient uptake of FITC-conjugated MSNPs in TZM-bl cells. The NVP was loaded within MSNPs, and its anti-HIV1 efficacy was assessed on HIV1 (R5 and X4 variants) infected TZM-bl cells and further confirmed on peripheral blood mononuclear cells (PBMCs). The in vitro assessment of the anti-HIV1 potential of NVP and NVP-MSNPs in HIV1 infected TZM-bl cells and PBMCs showed increased efficacy of NVP upon loading within MSNPs with significant increase in therapeutic index. The increased efficacy against HIV1 was accompanied by reduced cytotoxicity to TZM-bl cells and PBMCs. Further, reverse transcriptase (RT) assay confirmed the inhibitory effect on RTase, which is a key enzyme in HIV-1 replication. The present study showed that entrapment of NVP within MSNPs led to an increased efficacy with reduced cytotoxic effect resulting in the enhanced therapeutic index (TI).


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Nanopartículas , Fármacos Anti-VIH/farmacología , Humanos , Leucocitos Mononucleares , Nevirapina/farmacología , Dióxido de Silicio , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...