Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 619(7968): 94-101, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407683

RESUMEN

Despite numerous studies on Himalayan erosion, it is not known how the very high Himalayan peaks erode. Although valley floors are efficiently eroded by glaciers, the intensity of periglacial processes, which erode the headwalls extending from glacial cirques to crest lines, seems to decrease sharply with altitude1,2. This contrast suggests that erosion is muted and much lower than regional rock uplift rates for the highest Himalayan peaks, raising questions about their long-term evolution3,4. Here we report geological evidence for a giant rockslide that occurred around 1190 AD in the Annapurna massif (central Nepal), involving a total rock volume of about 23 km3. This event collapsed a palaeo-summit, probably culminating above 8,000 m in altitude. Our data suggest that a mode of high-altitude erosion could be mega-rockslides, leading to the sudden reduction of ridge-crest elevation by several hundred metres and ultimately preventing the disproportionate growth of the Himalayan peaks. This erosion mode, associated with steep slopes and high relief, arises from a greater mechanical strength of the peak substratum, probably because of the presence of permafrost at high altitude. Giant rockslides also have implications for landscape evolution and natural hazards: the massive supply of finely crushed sediments can fill valleys more than 150 km farther downstream and overwhelm the sediment load in Himalayan rivers for a century or more.

2.
Sci Total Environ ; 789: 148006, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082206

RESUMEN

This case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300-5250 m) and snow (5200-6665 m) samples collected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a shallow ice core recovered from the Khumbu Glacier (5300 m). In agreement with previous work, pre-monsoon aerosol deposition is dominated by dust originating from western sources and less frequently by transport from southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi, As) are found in surface snow and stream chemistry collected in the Khumbu region. As the most comprehensive case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for increased monitoring in this watershed and surrounding areas.


Asunto(s)
Contaminantes Atmosféricos , Tormentas Ciclónicas , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Nepal , Ríos , Estaciones del Año , Nieve
3.
iScience ; 24(5): 102418, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34113806

RESUMEN

The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33671205

RESUMEN

In 2019, the National Geographic and Rolex Perpetual Planet Everest expedition successfully retrieved the greatest diversity of scientific data ever from the mountain. The confluence of geologic, hydrologic, chemical and microbial hazards emergent as climate change increases glacier melt is significant. We review the findings of increased opportunity for landslides, water pollution, human waste contamination and earthquake events. Further monitoring and policy are needed to ensure the safety of residents, future climbers, and trekkers in the Mt. Everest watershed.


Asunto(s)
Expediciones , Montañismo , Altitud , Cambio Climático , Humanos , Cubierta de Hielo
5.
iScience ; 23(12): 101718, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33376965

RESUMEN

Global audiences are captivated by climbers pushing themselves to the limits in the hypoxic environment of Mount Everest. However, air pressure sets oxygen abundance, meaning it varies with the weather and climate warming. This presents safety issues for mountaineers but also an opportunity for public engagement around climate change. Here we blend new observations from Everest with ERA5 reanalysis (1979-2019) and climate model results to address both perspectives. We find that plausible warming could generate subtle but physiologically relevant changes in summit oxygen availability, including an almost 5% increase in annual minimum VO2 max for 2°C warming since pre-industrial. In the current climate we find evidence of swings in pressure sufficient to change Everest's apparent elevation by almost 750 m. Winter pressures can also plunge lower than previously reported, highlighting the importance of air pressure forecasts for the safety of those trying to push the physiological frontier on Mt. Everest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA