Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Curr Dev Nutr ; 8(4): 102146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638557

RESUMEN

Background: The amount and type of food consumed impacts the glycemic response and insulin needs of people with type 1 diabetes mellitus (T1DM). Daily variability in consumption, reflected in diet quality, may acutely impact glycemic levels and insulin needs. Objective: Type 1 Diabetes Exercise Initiative (T1DEXI) data were examined to evaluate the impact of daily diet quality on near-term glycemic control and interaction with exercise. Methods: Using the Remote Food Photography Method, ≤8 d of dietary intake data were analyzed per participant. Diet quality was quantified with the Healthy Eating Index-2015 (HEI), where a score of 100 indicates the highest-quality diet. Each participant day was classified as low HEI (≤57) or high HEI (>57) based on the mean of nationally reported HEI data. Within participants, the relationship between diet quality and subsequent glycemia measured by continuous glucose monitoring (CGM) and total insulin dose usage was evaluated using a paired t-test and robust regression models. Results: Two hundred twenty-three adults (76% female) with mean ± SD age, HbA1c, and body mass index (BMI) of 37 ± 14 y, 6.6% ± 0.7%, and 25.1 ± 3.6 kg/m2, respectively, were included in these analyses. The mean HEI score was 56 across all participant days. On high HEI days (mean, 66 ± 4) compared with low HEI days (mean, 47 ± 5), total time in range (70-180 mg/dL) was greater (77.2% ± 14% compared with 75.7% ± 14%, respectively, P = 0.01), whereas time above 180 mg/dL (19% ± 14% compared with 21% ± 15%, respectively, P = 0.004), mean glucose (143 ± 22 compared with 145 ± 22 mg/dL, respectively, P = 0.02), and total daily insulin dose (0.52 ± 0.18 compared with 0.54 ± 0.18 U/kg/d, respectively, P = 0.009) were lower. The interaction between diet quality and exercise on glycemia was not significant. Conclusions: Higher HEI scores correlated with improved glycemia and lower insulin needs, although the impact of diet quality was modest and smaller than the previously reported impact of exercise.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38669475

RESUMEN

Objective: To predict hypoglycemia and hyperglycemia risk during and after activity for adolescents with type 1 diabetes (T1D) using real-world data from the Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) study. Methods: Adolescents with T1D (n = 225; [mean ± SD] age = 14 ± 2 years; HbA1c = 7.1 ± 1.3%; T1D duration = 5 ± 4 years; 56% using hybrid closed loop), wearing continuous glucose monitors (CGMs), logged 3738 total activities over 10 days. Repeated Measures Random Forest (RMRF) and Repeated Measures Logistic Regression (RMLR) models were used to predict a composite risk of hypoglycemia (<70 mg/dL) and hyperglycemia (>250 mg/dL) within 2 h after starting exercise. Results: RMRF achieved high precision predicting composite risk and was more accurate than RMLR Area under the receiver operating characteristic curve (AUROC 0.737 vs. 0.661; P < 0.001). Activities with minimal composite risk had a starting glucose between 132 and 160 mg/dL and a glucose rate of change at activity start between -0.4 and -1.9 mg/dL/min. Time <70 mg/dL and time >250 mg/dL during the prior 24 h, HbA1c level, and insulin on board at activity start were also predictive. Separate models explored factors at the end of activity; activities with glucose between 128 and 133 mg/dL and glucose rate of change between 0.4 and -0.6 mg/dL/min had minimal composite risk. Conclusions: Physically active adolescents with T1D should aim to start exercise with an interstitial glucose between 130 and 160 mg/dL with a flat or slightly decreasing CGM trend to minimize risk for developing dysglycemia. Incorporating factors such as historical glucose and insulin can improve prediction modeling for the acute glucose responses to exercise.

3.
Diabetologia ; 67(6): 1009-1022, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38502241

RESUMEN

AIMS/HYPOTHESIS: Adults with type 1 diabetes should perform daily physical activity to help maintain health and fitness, but the influence of daily step counts on continuous glucose monitoring (CGM) metrics are unclear. This analysis used the Type 1 Diabetes Exercise Initiative (T1DEXI) dataset to investigate the effect of daily step count on CGM-based metrics. METHODS: In a 4 week free-living observational study of adults with type 1 diabetes, with available CGM and step count data, we categorised participants into three groups-below (<7000), meeting (7000-10,000) or exceeding (>10,000) the daily step count goal-to determine if step count category influenced CGM metrics, including per cent time in range (TIR: 3.9-10.0 mmol/l), time below range (TBR: <3.9 mmol/l) and time above range (TAR: >10.0 mmol/l). RESULTS: A total of 464 adults with type 1 diabetes (mean±SD age 37±14 years; HbA1c 48.8±8.1 mmol/mol [6.6±0.7%]; 73% female; 45% hybrid closed-loop system, 38% standard insulin pump, 17% multiple daily insulin injections) were included in the study. Between-participant analyses showed that individuals who exceeded the mean daily step count goal over the 4 week period had a similar TIR (75±14%) to those meeting (74±14%) or below (75±16%) the step count goal (p>0.05). In the within-participant comparisons, TIR was higher on days when the step count goal was exceeded or met (both 75±15%) than on days below the step count goal (73±16%; both p<0.001). The TBR was also higher when individuals exceeded the step count goals (3.1%±3.2%) than on days when they met or were below step count goals (difference in means -0.3% [p=0.006] and -0.4% [p=0.001], respectively). The total daily insulin dose was lower on days when step count goals were exceeded (0.52±0.18 U/kg; p<0.001) or were met (0.53±0.18 U/kg; p<0.001) than on days when step counts were below the current recommendation (0.55±0.18 U/kg). Step count had a larger effect on CGM-based metrics in participants with a baseline HbA1c ≥53 mmol/mol (≥7.0%). CONCLUSIONS/INTERPRETATION: Our results suggest that, compared with days with low step counts, days with higher step counts are associated with slight increases in both TIR and TBR, along with small reductions in total daily insulin requirements, in adults living with type 1 diabetes. DATA AVAILABILITY: The data that support the findings reported here are available on the Vivli Platform (ID: T1-DEXI; https://doi.org/10.25934/PR00008428 ).


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus Tipo 1 , Ejercicio Físico , Humanos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Adulto , Femenino , Masculino , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/metabolismo , Glucemia/análisis , Persona de Mediana Edad , Ejercicio Físico/fisiología , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Insulina/uso terapéutico , Insulina/administración & dosificación , Estudios de Cohortes , Monitoreo Continuo de Glucosa
4.
Artículo en Inglés | MEDLINE | ID: mdl-38441232

RESUMEN

OBJECTIVE: To assess whether impaired awareness of hypoglycemia (IAH) affects exercise-associated hypoglycemia in adults with type 1 diabetes (T1D). METHODS: We compared continuous glucose monitoring (CGM)-measured glucose during exercise and for 24-hours following exercise from 95 adults with T1D and IAH (Clarke score ≥4 or ≥1 severe hypoglycemic event within the past year) to 95 'Aware' adults (Clarke score ≤2 and no severe hypoglycemic event within the past year) matched on sex, age, insulin delivery modality, and HbA1c. A total of 4,236 exercise sessions, and 1,794 exercise days and 839 sedentary days, defined as 24-hours following exercise or a day without exercise, respectively, were available for analysis. RESULTS: Participants with IAH exhibited a non-significant trend towards greater decline in glucose during exercise compared to 'Aware' (-21 ± 44 vs. -19 ± 43 mg/dL [-1.17 ± 2.44 vs. -1.05 ± 2.39 mmol/L], adjusted group difference of -4.2 [95% CI: -8.4 to 0.05] mg/dL [-0.23 95% CI: -0.47 to 0.003 mmol/L], P = 0.051). Individuals with IAH had higher proportion of days with hypoglycemic events <70 mg/dL[3.89 mmol/L] (≥15 minutes <70 mg/dL[<3.89 mmol/L]) both on exercise days (51% vs. 43%, P = 0.006) and sedentary days (48% vs. 30%, P = 0.001). The increased odds of experiencing a hypoglycemic event <70 mg/dL[<3.89 mmol/L] for individuals with IAH compared to 'Aware' did not differ significantly between exercise and sedentary days (interaction P = 0.36). CONCLUSION: Individuals with IAH have a higher underlying risk of hypoglycemia than 'Aware' individuals. Exercise does not appear to differentially increase risk for hypoglycemia during the activity, or in the subsequent 24-hours for IAH compared to Aware individuals with T1D.

5.
J Diabetes Sci Technol ; : 19322968241234687, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456512

RESUMEN

AIMS: To evaluate factors affecting within-participant reproducibility in glycemic response to different forms of exercise. METHODS: Structured exercise sessions ~30 minutes in length from the Type 1 Diabetes Exercise Initiative (T1DEXI) study were used to assess within-participant glycemic variability during and after exercise. The effect of several pre-exercise factors on the within-participant glycemic variability was evaluated. RESULTS: Data from 476 adults with type 1 diabetes were analyzed. A participant's change in glucose during exercise was reproducible within 15 mg/dL of the participant's other exercise sessions only 32% of the time. Participants who exercised with lower and more consistent glucose level, insulin on board (IOB), and carbohydrate intake at exercise start had less variability in glycemic change during exercise. Participants with lower mean glucose (P < .001), lower glucose coefficient of variation (CV) (P < .001), and lower % time <70 mg/dL (P = .005) on sedentary days had less variable 24-hour post-exercise mean glucose. CONCLUSIONS: Reproducibility of change in glucose during exercise was low in this cohort of adults with T1D, but more consistency in pre-exercise glucose levels, IOB, and carbohydrates may increase this reproducibility. Mean glucose variability in the 24 hours after exercise is influenced more by the participant's overall glycemic control than other modifiable factors.

6.
Diabetes Care ; 47(5): 849-857, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412033

RESUMEN

OBJECTIVE: To explore 24-h postexercise glycemia and hypoglycemia risk, data from the Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) study were analyzed to examine factors that may influence glycemia. RESEARCH DESIGN AND METHODS: This was a real-world observational study with participant self-reported physical activity, food intake, and insulin dosing (multiple daily injection users). Heart rate, continuous glucose data, and available pump data were collected. RESULTS: A total of 251 adolescents (42% females), with a mean ± SD age of 14 ± 2 years, and hemoglobin A1c (HbA1c) of 7.1 ± 1.3% (54 ± 14.2 mmol/mol), recorded 3,319 activities over ∼10 days. Trends for lower mean glucose after exercise were observed in those with shorter disease duration and lower HbA1c; no difference by insulin delivery modality was identified. Larger glucose drops during exercise were associated with lower postexercise mean glucose levels, immediately after activity (P < 0.001) and 12 to <16 h later (P = 0.02). Hypoglycemia occurred on 14% of nights following exercise versus 12% after sedentary days. On nights following exercise, more hypoglycemia occurred when average total activity was ≥60 min/day (17% vs. 8% of nights, P = 0.01) and on days with longer individual exercise sessions. Higher nocturnal hypoglycemia rates were also observed in those with longer disease duration, lower HbA1c, conventional pump use, and if time below range was ≥4% in the previous 24 h. CONCLUSIONS: In this large real-world pediatric exercise study, nocturnal hypoglycemia was higher on nights when average activity duration was higher. Characterizing both participant- and event-level factors that impact glucose in the postexercise recovery period may support development of new guidelines, decision support tools, and refine insulin delivery algorithms to better support exercise in youth with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Femenino , Humanos , Adolescente , Niño , Masculino , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucemia , Hemoglobina Glucada , Insulina/uso terapéutico , Ejercicio Físico/fisiología , Glucosa , Insulina Regular Humana , Hipoglucemiantes/uso terapéutico , Automonitorización de la Glucosa Sanguínea
7.
Artículo en Inglés | MEDLINE | ID: mdl-38417016

RESUMEN

Background: Managing exercise in type 1 diabetes is challenging, in part, because different types of exercises can have diverging effects on glycemia. The aim of this work was to develop a classification model that can classify an exercise event (structured or unstructured) as aerobic, interval, or resistance for the purpose of incorporation into an automated insulin delivery (AID) system. Methods: A long short-term memory network model was developed with real-world data from 30-min structured sessions of at-home exercise (aerobic, resistance, or mixed) using triaxial accelerometer, heart rate, and activity duration information. The detection algorithm was used to classify 15 common free-living and unstructured activities and relate each to exercise-associated change in glucose. Results: A total of 1610 structured exercise sessions were used to train, validate, and test the model. The accuracy for the structured exercise sessions in the testing set was 72% for aerobic, 65% for interval, and 77% for resistance. In addition, we tested the classifier on 3328 unstructured sessions. We validated the session-associated change in glucose against the expected change during exercise for each type. Mean and standard deviation of the change in glucose of -20.8 (40.3) mg/dL were achieved for sessions classified as aerobic, -16.2 (39.0) mg/dL for sessions classified as interval, and -11.6 (38.8) mg/dL for sessions classified as resistance. Conclusions: The proposed algorithm reliably identified physical activity associated with expected change in glucose, which could be integrated into an AID system to manage the exercise disturbance in glycemia according to the predicted class.

8.
Nutrients ; 16(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201991

RESUMEN

We explored the association between macronutrient intake and postprandial glucose variability in a large sample of youth living with T1D and consuming free-living meals. In the Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) Study, youth took photographs before and after their meals on 3 days during a 10 day observation period. We used the remote food photograph method to obtain the macronutrient content of youth's meals. We also collected physical activity, continuous glucose monitoring, and insulin use data. We measured glycemic variability using standard deviation (SD) and coefficient of variation (CV) of glucose for up to 3 h after meals. Our sample included 208 youth with T1D (mean age: 14 ± 2 years, mean HbA1c: 54 ± 14.2 mmol/mol [7.1 ± 1.3%]; 40% female). We observed greater postprandial glycemic variability (SD and CV) following meals with more carbohydrates. In contrast, we observed less postprandial variability following meals with more fat (SD and CV) and protein (SD only) after adjusting for carbohydrates. Insulin modality, exercise after meals, and exercise intensity did not influence associations between macronutrients and postprandial glycemic variability. To reduce postprandial glycemic variability in youth with T1D, clinicians should encourage diversified macronutrient meal content, with a goal to approximate dietary guidelines for suggested carbohydrate intake.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glucosa , Adolescente , Femenino , Humanos , Niño , Masculino , Automonitorización de la Glucosa Sanguínea , Glucemia , Comidas , Insulina
9.
Diabetes Care ; 47(1): 132-139, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922335

RESUMEN

OBJECTIVE: Data from the Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) study were evaluated to understand glucose changes during activity and identify factors that may influence changes. RESEARCH DESIGN AND METHODS: In this real-world observational study, adolescents with type 1 diabetes self-reported physical activity, food intake, and insulin dosing (multiple-daily injection users) using a smartphone application. Heart rate and continuous glucose monitoring data were collected, as well as pump data downloads. RESULTS: Two hundred fifty-one adolescents (age 14 ± 2 years [mean ± SD]; HbA1c 7.1 ± 1.3% [54 ± 14.2 mmol/mol]; 42% female) logged 3,738 activities over ∼10 days of observation. Preactivity glucose was 163 ± 66 mg/dL (9.1 ± 3.7 mmol/L), dropping to 148 ± 66 mg/dL (8.2 ± 3.7 mmol/L) by end of activity; median duration of activity was 40 min (20, 75 [interquartile range]) with a mean and peak heart rate of 109 ± 16 bpm and 130 ± 21 bpm. Drops in glucose were greater in those with lower baseline HbA1c levels (P = 0.002), shorter disease duration (P = 0.02), less hypoglycemia fear (P = 0.04), and a lower BMI (P = 0.05). Event-level predictors of greater drops in glucose included self-classified "noncompetitive" activities, insulin on board >0.05 units/kg body mass, glucose already dropping prior to the activity, preactivity glucose >150 mg/dL (>8.3 mmol/L) and time 70-180 mg/dL >70% in the 24 h before the activity (all P < 0.001). CONCLUSIONS: Participant-level and activity event-level factors can help predict the magnitude of drop in glucose during real-world physical activity in youth with type 1 diabetes. A better appreciation of these factors may improve decision support tools and self-management strategies to reduce activity-induced dysglycemia in active adolescents living with the disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Adolescente , Femenino , Niño , Masculino , Glucemia , Hemoglobina Glucada , Automonitorización de la Glucosa Sanguínea , Insulina/uso terapéutico , Insulina Regular Humana , Ejercicio Físico/fisiología , Hipoglucemiantes/uso terapéutico
10.
JAMA Netw Open ; 6(10): e2336876, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37792375

RESUMEN

Importance: As the number of patients with diabetes continues to increase in the United States, novel approaches to clinical care access should be considered to meet the care needs for this population, including support for diabetes-related technology. Objective: To evaluate a virtual clinic to facilitate comprehensive diabetes care, support continuous glucose monitoring (CGM) integration into diabetes self-management, and provide behavioral health support for diabetes-related issues. Design, Setting, and Participants: This cohort study was a prospective, single-arm, remote study involving adult participants with type 1 or type 2 diabetes who were referred through community resources. The study was conducted virtually from August 24, 2020, to May 26, 2022; analysis was conducted at the clinical coordinating center. Intervention: Training and education led by a Certified Diabetes Care and Education Specialist for CGM use through a virtual endocrinology clinic structure, which included endocrinologists and behavioral health team members. Main Outcomes and Measures: Main outcomes included CGM-measured mean glucose level, coefficient of variation, and time in range (TIR) of 70 to 180 mg/dL, time with values greater than 180 mg/dL or 250 mg/dL, and time with values less than 70 mg/dL or 54 mg/dL. Hemoglobin A1c was measured at baseline and at 12 and 24 weeks. Results: Among the 234 participants, 160 had type 1 diabetes and 74 had type 2 diabetes. The mean (SD) age was 47 (14) years, 123 (53%) were female, and median diabetes duration was 20 years. Median (IQR) CGM use over 6 months was 96% (91%-98%) for participants with type 1 diabetes and 94% (85%-97%) for those with type 2 diabetes. Mean (SD) hemoglobin A1c (HbA1c) in those with type 1 diabetes decreased from 7.8% (1.6%) at baseline to 7.1% (1.0%) at 3 months and 7.1% (1.0%) at 6 months (mean change from baseline to 6 months, -0.6%, 95% CI, -0.8% to -0.5%; P < .001), with an 11% mean TIR increase over 6 months (95% CI, 9% to 14%; P < .001). Mean HbA1c in participants with type 2 diabetes decreased from 8.1% (1.7%) at baseline to 7.1% (1.0%) at 3 months and 7.1% (0.9%) at 6 months (mean change from baseline to 6 months, -1.0%; 95% CI, -1.4% to -0.7%; P < .001), with an 18% TIR increase over 6 months (95% CI, 13% to 24%; P < .001). In participants with type 1 diabetes, mean percentage of time with values less than 70 mg/dL and less than 54 mg/dL decreased over 6 months by 0.8% (95% CI, -1.2% to -0.4%; P = .001) and by 0.3% (95% CI, -0.5% to -0.2%, P < .001), respectively. In the type 2 diabetes group, hypoglycemia was rare (mean [SD] percentage of time <70 mg/dL, 0.5% [0.6%]; and <54 mg/dL, 0.07% [0.14%], over 6 months). Conclusions and Relevance: Results from this cohort study demonstrated clinical benefits associated with implementation of a comprehensive care model that included diabetes education. This model of care has potential to reach a large portion of patients with diabetes, facilitate diabetes technology adoption, and improve glucose control.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Automanejo , Telemedicina , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Diabetes Mellitus Tipo 1/terapia , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Estudios de Cohortes , Estudios Prospectivos
11.
J Am Med Inform Assoc ; 31(1): 109-118, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37812784

RESUMEN

OBJECTIVE: Nocturnal hypoglycemia is a known challenge for people with type 1 diabetes, especially for physically active individuals or those on multiple daily injections. We developed an evidential neural network (ENN) to predict at bedtime the probability and timing of nocturnal hypoglycemia (0-4 vs 4-8 h after bedtime) based on several glucose metrics and physical activity patterns. We utilized these predictions in silico to prescribe bedtime carbohydrates with a Smart Snack intervention specific to the predicted minimum nocturnal glucose and timing of nocturnal hypoglycemia. MATERIALS AND METHODS: We leveraged free-living datasets collected from 366 individuals from the T1DEXI Study and Glooko. Inputs to the ENN used to model nocturnal hypoglycemia were derived from demographic information, continuous glucose monitoring, and physical activity data. We assessed the accuracy of the ENN using area under the receiver operating curve, and the clinical impact of the Smart Snack intervention through simulations. RESULTS: The ENN achieved an area under the receiver operating curve of 0.80 and 0.71 to predict nocturnal hypoglycemic events during 0-4 and 4-8 h after bedtime, respectively, outperforming all evaluated baseline methods. Use of the Smart Snack intervention reduced probability of nocturnal hypoglycemia from 23.9 ± 14.1% to 14.0 ± 13.3% and duration from 7.4 ± 7.0% to 2.4 ± 3.3% in silico. DISCUSSION: Our findings indicate that the ENN-based Smart Snack intervention has the potential to significantly reduce the frequency and duration of nocturnal hypoglycemic events. CONCLUSION: A decision support system that combines prediction of minimum nocturnal glucose and proactive recommendations for bedtime carbohydrate intake might effectively prevent nocturnal hypoglycemia and reduce the burden of glycemic self-management.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Bocadillos , Glucemia , Automonitorización de la Glucosa Sanguínea , Incertidumbre , Hipoglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Insulina
12.
Diabetes Technol Ther ; 25(9): 602-611, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294539

RESUMEN

Objective: Exercise is known to increase the risk for hypoglycemia in type 1 diabetes (T1D) but predicting when it may occur remains a major challenge. The objective of this study was to develop a hypoglycemia prediction model based on a large real-world study of exercise in T1D. Research Design and Methods: Structured study-specified exercise (aerobic, interval, and resistance training videos) and free-living exercise sessions from the T1D Exercise Initiative study were used to build a model for predicting hypoglycemia, a continuous glucose monitoring value <70 mg/dL, during exercise. Repeated measures random forest (RMRF) and repeated measures logistic regression (RMLR) models were constructed to predict hypoglycemia using predictors at the start of exercise and baseline characteristics. Models were evaluated with area under the receiver operating characteristic curve (AUC) and balanced accuracy. Results: RMRF and RMLR had similar AUC (0.833 vs. 0.825, respectively) and both models had a balanced accuracy of 77%. The probability of hypoglycemia was higher for exercise sessions with lower pre-exercise glucose levels, negative pre-exercise glucose rates of change, greater percent time <70 mg/dL in the 24 h before exercise, and greater pre-exercise bolus insulin-on-board (IOB). Free-living aerobic exercises, walking/hiking, and physical labor had the highest probability of hypoglycemia, while structured exercises had the lowest probability of hypoglycemia. Conclusions: RMRF and RMLR accurately predict hypoglycemia during exercise and identify factors that increase the risk of hypoglycemia. Lower glucose, decreasing levels of glucose before exercise, and greater pre-exercise IOB largely predict hypoglycemia risk in adults with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Adulto , Humanos , Hipoglucemiantes , Glucemia , Bosques Aleatorios , Automonitorización de la Glucosa Sanguínea , Hipoglucemia/etiología , Hipoglucemia/prevención & control , Insulina , Ejercicio Físico , Insulina Regular Humana
13.
J Diabetes Sci Technol ; : 19322968231153896, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36799284

RESUMEN

BACKGROUND: Managing glycemia during and after exercise events in type 1 diabetes (T1D) is challenging since these events can have wide-ranging effects on glycemia depending on the event timing, type, intensity. To this end, advanced physical activity-informed technologies can be beneficial for improving glucose control. METHODS: We propose a real-time physical activity detection and classification framework, which builds upon random forest models. This module automatically detects exercise sessions and predicts the activity type and intensity from tri-axial accelerometer, heart rate, and continuous glucose monitoring records. RESULTS: Data from 19 adults with T1D who performed structured sessions of either aerobic, resistance, or high-intensity interval exercise at varying times of day were used to train and test this framework. The exercise onset and completion were both predicted within 1 minute with an average accuracy of 81% and 78%, respectively. Activity type and intensity were identified within 2.38 minutes and from the exercise onset. On participants assigned to the test set, the average accuracy for activity type and intensity classification was 74% and 73%, respectively, if exercise was announced. For unannounced exercise events, the classification accuracy was 65% for the activity type and 70% for its intensity. CONCLUSIONS: The proposed module showed high performance in detection and classification of exercise in real-time within a minute of exercise onset. Integration of this module into insulin therapy decisions can help facilitate glucose management around physical activity.

14.
Diabetes Care ; 46(4): 704-713, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795053

RESUMEN

OBJECTIVE: Maintenance of glycemic control during and after exercise remains a major challenge for individuals with type 1 diabetes. Glycemic responses to exercise may differ by exercise type (aerobic, interval, or resistance), and the effect of activity type on glycemic control after exercise remains unclear. RESEARCH DESIGN AND METHODS: The Type 1 Diabetes Exercise Initiative (T1DEXI) was a real-world study of at-home exercise. Adult participants were randomly assigned to complete six structured aerobic, interval, or resistance exercise sessions over 4 weeks. Participants self-reported study and nonstudy exercise, food intake, and insulin dosing (multiple daily injection [MDI] users) using a custom smart phone application and provided pump (pump users), heart rate, and continuous glucose monitoring data. RESULTS: A total of 497 adults with type 1 diabetes (mean age ± SD 37 ± 14 years; mean HbA1c ± SD 6.6 ± 0.8% [49 ± 8.7 mmol/mol]) assigned to structured aerobic (n = 162), interval (n = 165), or resistance (n = 170) exercise were analyzed. The mean (± SD) change in glucose during assigned exercise was -18 ± 39, -14 ± 32, and -9 ± 36 mg/dL for aerobic, interval, and resistance, respectively (P < 0.001), with similar results for closed-loop, standard pump, and MDI users. Time in range 70-180 mg/dL (3.9-10.0 mmol/L) was higher during the 24 h after study exercise when compared with days without exercise (mean ± SD 76 ± 20% vs. 70 ± 23%; P < 0.001). CONCLUSIONS: Adults with type 1 diabetes experienced the largest drop in glucose level with aerobic exercise, followed by interval and resistance exercise, regardless of insulin delivery modality. Even in adults with well-controlled type 1 diabetes, days with structured exercise sessions contributed to clinically meaningful improvement in glucose time in range but may have slightly increased time below range.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucemia , Automonitorización de la Glucosa Sanguínea/métodos , Sistemas de Infusión de Insulina , Insulina , Insulina Regular Humana/uso terapéutico , Ejercicio Físico/fisiología , Hipoglucemiantes/uso terapéutico
15.
Pediatr Diabetes ; 23(4): 439-446, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35138021

RESUMEN

Insulin is commonly used to reverse gluco-toxicity in youth with newly diagnosed type 2 diabetes (T2D), but many are subsequently weaned off insulin. We analyzed Pediatric Diabetes Consortium (PDC) data to determine how long glycemic control is maintained after termination of initial insulin treatment. Youth with T2D who had previously been on insulin but were on either an intensive lifestyle intervention alone or metformin alone upon enrollment in the PDC T2D Registry were studied (N = 183). The primary outcome was time to treatment failure, defined by need to restart insulin or metformin or another diabetes medication. Data were analyzed using logistic regression to assess risk factors for treatment failure. Of the 183 participants studied (mean age 15 years, diabetes duration 1.7 years), 54% experienced treatment failure (median follow-up time 1.7 years). In the subgroup on metformin monotherapy (N = 140), 45% subsequently required restart of insulin. Moreover, of participants in the subgroup treated with an intensive lifestyle intervention alone (N = 43), 81% restarted insulin or were treated with metformin or other diabetes medication. In both groups, median time to treatment failure was 1.2 years. Higher HbA1c at enrollment was significantly associated with treatment failure (p < 0.001). Youth with T2D who are initially treated with insulin have a high rate of treatment failure when switched to intensive lifestyle alone or metformin alone. Our data highlight the severe and progressive nature of youth onset T2D, hence patients should be monitored closely for deteriorating glycemic control after being weaned off insulin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Adolescente , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Metformina/uso terapéutico , Insuficiencia del Tratamiento
16.
Diabetes Care ; 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475033

RESUMEN

BACKGROUND: Type 2 diabetes in the U.S. is more prevalent in youth of minority racial-ethnic background, but disparities in health outcomes have not been examined in this population. RESEARCH DESIGN AND METHODS: We examined racial-ethnic differences in the initial presentation and subsequent comorbidities in 1,217 youth with type 2 diabetes (63% girls) enrolled in the Pediatric Diabetes Consortium (PDC) Registry from February 2012 to June 2018. Demographic and clinical data were collected from medical records and participant self-report. RESULTS: Overall, the mean age at presentation was 13.4 ± 2.4 years, and BMI was 35.0 ± 9.4 kg/m2. HbA1c was higher and C-peptide was lower in non-Hispanic Black (NHB) and Hispanic (H) youth compared with non-Hispanic White (NHW) youth. NHB were three times as likely to present in diabetic ketoacidosis (19%) versus NHW (6.3%) and H (7.5%), and NHB and H both had a worse HbA1c trajectory compared with NHW peers. Microalbuminuria was documented in 11%, hypertension in 34%, and dyslipidemia in 42% of Registry participants, with no significant difference among racial-ethnic groups. Nonalcoholic fatty liver disease (NAFLD) was diagnosed in 9% and 11% of H and NHW, respectively, versus 2% in NHB. CONCLUSIONS: NHB and H youth with type 2 diabetes presented with worse metabolic control and had persistently worse HbA1c trajectories compared with NHW. Comorbidities exist in a large percentage of these youth independent of race-ethnicity, except for NAFLD being less prevalent in NHB. Greater efforts are needed to mitigate racial-ethnic disparities at diagnosis and in the management of youth with type 2 diabetes.

17.
Diabetes Technol Ther ; 23(2): 85-94, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32833544

RESUMEN

Background: People with type 1 diabetes estimate meal carbohydrate content to accurately dose insulin, yet, protein and fat content of meals also influences postprandial glycemia. We examined accuracy of macronutrient content estimation via a novel phone app. Participant estimates were compared with expert nutrition analyses performed via the Remote Food Photography Method© (RFPM©). Methods: Data were collected through a novel phone app. Participants were asked to take photos of meals/snacks on the day of and day after scheduled exercise, enter carbohydrate estimates, and categorize meals as low, typical, or high protein and fat. Glycemia was measured via continuous glucose monitoring. Results: Participants (n = 48) were 15-68 years (34 ± 14 years); 40% were female. The phone app plus RFPM© analysis captured 88% ± 29% of participants' estimated total energy expenditure. The majority (70%) of both low-protein and low-fat meals were accurately classified. Only 22% of high-protein meals and 17% of high-fat meals were accurately classified. Forty-nine percent of meals with <30 g of carbohydrates were overestimated by an average of 25.7 ± 17.2 g. The majority (64%) of large carbohydrate meals (≥60 g) were underestimated by an average of 53.6 ± 33.8 g. Glycemic response to large carbohydrate meals was similar between participants who underestimated or overestimated carbohydrate content, suggesting that factors beyond carbohydrate counting may impact postprandial glycemic response. Conclusions: Accurate estimation of total macronutrients in meals could be leveraged to improve insulin decision support tools and closed loop insulin delivery systems; development of tools to improve macronutrient estimation skills should be considered.


Asunto(s)
Diabetes Mellitus Tipo 1 , Carbohidratos de la Dieta/análisis , Aplicaciones Móviles , Adolescente , Adulto , Anciano , Glucemia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Humanos , Insulina , Masculino , Comidas , Persona de Mediana Edad , Nutrientes , Fotograbar , Periodo Posprandial , Adulto Joven
18.
Diabetes Technol Ther ; 23(5): 376-383, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33259257

RESUMEN

Objective: This study analysis was designed to examine the 24-h effects of exercise on glycemic control as measured by continuous glucose monitoring (CGM). Methods: Individuals with type 1 diabetes (ages: 15-68 years; hemoglobin A1c: 7.5% ± 1.5% [mean ± standard deviation (SD)]) were randomly assigned to complete twice-weekly aerobic, high-intensity interval, or resistance-based exercise sessions in addition to their personal exercise sessions for a period of 4 weeks. Exercise was tracked with wearables and glucose concentrations assessed using CGM. An exercise day was defined as a 24-h period after the end of exercise, while a sedentary day was defined as any 24-h period with no recorded exercise ≥10 min long. Sedentary days start at least 24 h after the end of exercise. Results: Mean glucose was lower (150 ± 45 vs. 166 ± 49 mg/dL, P = 0.01), % time in range [70-180 mg/dL] higher (62% ± 23% vs. 56% ± 25%, P = 0.03), % time >180 mg/dL lower (28% ± 23% vs. 37% ± 26%, P = 0.01), and % time <70 mg/dL higher (9.3% ± 11.0% vs. 7.1% ± 9.1%, P = 0.04) on exercise days compared with sedentary days. Glucose variability and % time <54 mg/dL did not differ significantly between exercise and sedentary days. No significant differences in glucose control by exercise type were observed. Conclusion: Participants had lower 24-h mean glucose levels and a greater time in range on exercise days compared with sedentary days, with mode of exercise affecting glycemia similarly. In summary, this study offers data supporting frequency of exercise as a method of facilitating glucose control but does not suggest an effect for mode of exercise.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Anciano , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/terapia , Glucosa , Hemoglobina Glucada/análisis , Humanos , Persona de Mediana Edad , Adulto Joven
19.
J Endocr Soc ; 4(9): bvaa076, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32864542

RESUMEN

The purpose of this study was to evaluate feasibility of initiating continuous glucose monitoring (CGM) through telehealth as a means of expanding access. Adults with type 1 diabetes (N = 27) or type 2 diabetes using insulin (N = 7) and interest in starting CGM selected a CGM system (Dexcom G6 or Abbott FreeStyle Libre), which they received by mail. CGM was initiated with a certified diabetes care and education specialist providing instruction via videoconference or phone. The primary outcome was days per week of CGM use during the last 4 weeks. Hemoglobin A1c (HbA1c) was measured at baseline and 12 weeks. Participant self-reported outcome measures were also evaluated. All 34 participants (mean age, 46 ±â€…18 years; 53% female, 85% white) were using CGM at 12 weeks, with 94% using CGM at least 6 days per week during weeks 9 to 12. Mean HbA1c decreased from 8.3 ±â€…1.6 at baseline to 7.2 ±â€…1.3 at 12 weeks (P < .001) and mean time in range (70-180 mg/dL, 3.9-10.0 mmol/L) increased from an estimated 48% ±â€…18% to 59% ±â€…20% (P < .001), an increase of approximately 2.7 hours/day. Substantial benefits of CGM to quality of life were observed, with reduced diabetes distress, increased satisfaction with glucose monitoring, and fewer perceived technology barriers to management. Remote CGM initiation was successful in achieving sustained use and improving glycemic control after 12 weeks as well as improving quality-of-life indicators. If widely implemented, this telehealth approach could substantially increase the adoption of CGM and potentially improve glycemic control for people with diabetes using insulin.

20.
J Clin Endocrinol Metab ; 105(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32382736

RESUMEN

CONTEXT: Minority young adults (YA) currently represent the largest growing population with type 1 diabetes (T1D) and experience very poor outcomes. Modifiable drivers of disparities need to be identified, but are not well-studied. OBJECTIVE: To describe racial-ethnic disparities among YA with T1D and identify drivers of glycemic disparity other than socioeconomic status (SES). DESIGN: Cross-sectional multicenter collection of patient and chart-reported variables, including SES, social determinants of health, and diabetes-specific factors, with comparison between non-Hispanic White, non-Hispanic Black, and Hispanic YA and multilevel modeling to identify variables that account for glycemic disparity apart from SES. SETTING: Six diabetes centers across the United States. PARTICIPANTS: A total of 300 YA with T1D (18-28 years: 33% non-Hispanic White, 32% non-Hispanic Black, and 34% Hispanic). MAIN OUTCOME: Racial-ethnic disparity in HbA1c levels. RESULTS: Non-Hispanic Black and Hispanic YA had lower SES, higher HbA1c levels, and much lower diabetes technology use than non-Hispanic White YA (P < 0.001). Non-Hispanic Black YA differed from Hispanic, reporting higher diabetes distress and lower self-management (P < 0.001). After accounting for SES, differences in HbA1c levels disappeared between non-Hispanic White and Hispanic YA, whereas they remained for non-Hispanic Black YA (+ 2.26% [24 mmol/mol], P < 0.001). Diabetes technology use, diabetes distress, and disease self-management accounted for a significant portion of the remaining non-Hispanic Black-White glycemic disparity. CONCLUSION: This study demonstrated large racial-ethnic inequity in YA with T1D, especially among non-Hispanic Black participants. Our findings reveal key opportunities for clinicians to potentially mitigate glycemic disparity in minority YA by promoting diabetes technology use, connecting with social programs, and tailoring support for disease self-management and diabetes distress to account for social contextual factors.


Asunto(s)
Diabetes Mellitus Tipo 1/epidemiología , Disparidades en el Estado de Salud , Grupos Minoritarios/estadística & datos numéricos , Automanejo/estadística & datos numéricos , Clase Social , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/estadística & datos numéricos , Estudios Transversales , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Etnicidad/estadística & datos numéricos , Femenino , Hemoglobina Glucada/análisis , Humanos , Masculino , Cooperación del Paciente/estadística & datos numéricos , Grupos Raciales/estadística & datos numéricos , Determinantes Sociales de la Salud/estadística & datos numéricos , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...