Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(9): 1018, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542117

RESUMEN

Biochemical oxygen demand (BOD) is one of the most important water/wastewater quality parameters. BOD5 is the amount of oxygen consumed in 5 days by microorganisms that oxidize biodegradable organic materials in an aerobic biochemical manner. The primary objective of this research is to apply microbial fuel cells (MFCs) to reduce the time requirement of BOD5 measurements. An artificial neural network (ANN) has been created, and the predictions we obtained for BOD5 measurements were carried out within 6-24 h with an average error of 7%. The outcomes demonstrated the viability of our AI MFC/BES BOD5 sensor in real-life scenarios.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Análisis de la Demanda Biológica de Oxígeno , Monitoreo del Ambiente , Oxígeno/análisis
2.
IEEE J Biomed Health Inform ; 27(7): 3302-3313, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37067963

RESUMEN

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.


Asunto(s)
Aprendizaje Profundo , Ventrículos Cardíacos , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Atrios Cardíacos
3.
Sci Rep ; 12(1): 20963, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471089

RESUMEN

There is increasing focus on applying deep learning methods to electrocardiograms (ECGs), with recent studies showing that neural networks (NNs) can predict future heart failure or atrial fibrillation from the ECG alone. However, large numbers of ECGs are needed to train NNs, and many ECGs are currently only in paper format, which are not suitable for NN training. We developed a fully-automated online ECG digitisation tool to convert scanned paper ECGs into digital signals. Using automated horizontal and vertical anchor point detection, the algorithm automatically segments the ECG image into separate images for the 12 leads and a dynamical morphological algorithm is then applied to extract the signal of interest. We then validated the performance of the algorithm on 515 digital ECGs, of which 45 were printed, scanned and redigitised. The automated digitisation tool achieved 99.0% correlation between the digitised signals and the ground truth ECG (n = 515 standard 3-by-4 ECGs) after excluding ECGs with overlap of lead signals. Without exclusion, the performance of average correlation was from 90 to 97% across the leads on all 3-by-4 ECGs. There was a 97% correlation for 12-by-1 and 3-by-1 ECG formats after excluding ECGs with overlap of lead signals. Without exclusion, the average correlation of some leads in 12-by-1 ECGs was 60-70% and the average correlation of 3-by-1 ECGs achieved 80-90%. ECGs that were printed, scanned, and redigitised, our tool achieved 96% correlation with the original signals. We have developed and validated a fully-automated, user-friendly, online ECG digitisation tool. Unlike other available tools, this does not require any manual segmentation of ECG signals. Our tool can facilitate the rapid and automated digitisation of large repositories of paper ECGs to allow them to be used for deep learning projects.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Humanos , Algoritmos , Electrocardiografía/métodos , Redes Neurales de la Computación , Fibrilación Atrial/diagnóstico
4.
Diagnostics (Basel) ; 12(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36140439

RESUMEN

BACKGROUND AND OBJECTIVE: Medical microwave radiometry (MWR) is used to capture the thermal properties of internal tissues and has usages in breast cancer detection. Our goal in this paper is to improve classification performance and investigate automated neural architecture search methods. METHODS: We investigated extending the weight agnostic neural network by optimizing the weights using the bi-population covariance matrix adaptation evolution strategy (BIPOP-CMA-ES) once the topology was found. We evaluated and compared the model based on the F1 score, accuracy, precision, recall, and the number of connections. RESULTS: The experiments were conducted on a dataset of 4912 patients, classified as low or high risk for breast cancer. The weight agnostic BIPOP-CMA-ES model achieved the best average performance. It obtained an F1-score of 0.933, accuracy of 0.932, precision of 0.929, recall of 0.942, and 163 connections. CONCLUSIONS: The results of the model are an indication of the promising potential of MWR utilizing a neural network-based diagnostic tool for cancer detection. By separating the tasks of topology search and weight training, we can improve the overall performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...