Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 191(3): 181, 2019 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-30798372

RESUMEN

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was applied for the determination of Cd and Zn distributions within the leaves of Cd- and Zn-hyperaccumulating plants, Noccaea caerulescens, N. praecox, and Arabidopsis halleri, in contrast to nonaccumulator species, Thlaspi arvense and A. thaliana. The elemental mapping of the selected leaf area was accomplished via line scans with a 110-µm-diameter laser beam at a 37-µm s-1 scan speed and repetition rate of 10 Hz. The lines were spaced 180 µm apart and ablated at an energy density of 2 J cm-2. The elemental imaging clearly confirmed that Cd was predominantly distributed within the parenchyma of the T. arvense, whereas in the Noccaea spp. and A. halleri, the highest intensity Cd signal was observed in the veins of the leaves. For Zn, higher intensities were observed in the veins for all the plant species except for A. thaliana. Close relationships between Zn and Ca were identified for the Noccaea spp. leaves. These relationships were not confirmed for A. halleri. Significant correlations were also proved between the Cd and Zn distribution in A. halleri, but not for the Noccaea spp. For both T. arvense and A. thaliana, no relevant significant relationship for the interpretation of the results was observed. Thus, the LA-ICP-MS imaging is proved as a relevant technique for the description and understanding of the elements in hyperaccumulating or highly accumulating plant species, although its sensitivity for the natural element contents in nonaccumulator plant species is still insufficient.


Asunto(s)
Monitoreo del Ambiente , Oligoelementos/análisis , Arabidopsis/química , Brassicaceae/química , Cadmio , Hojas de la Planta/química , Raíces de Plantas , Thlaspi/química , Zinc
2.
Chemosphere ; 220: 678-686, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30605810

RESUMEN

Urban soil areas can be contaminated with potentially dangerous heavy metals (HM), which might have got there by means of the human activity. The aim of the present study was to determine the contamination level of the city park soils and its impact on urban ecosystem. The indices assessing soil contamination such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (IPIN), and indices assessing health risks, namely Hazard Index (HI) and Carcinogenic Risk (CR), have been calculated. Furthermore, the phytotoxic effect of the soil samples has been determined. The soil contains in average 58.6 mg/kg Zn, 0.3 mg/kg Cd, 27.2 mg/kg Pb and 16.6 mg/kg Cu. Based on EF index, it has been confirmed that the increased amounts of Zn, Cd and Pb in the soil are of the anthropogenic origin. The soil may be classified as moderately to strongly polluted in the case of Zn and Pb according to Igeo. Nevertheless, soil contamination in the park is at a safe level as per IPIN. Based on HI and CR indices, it is possible to state that the soil in the park does not pose any health risks. Subject to the outcomes of the toxicity test, the concentrations of HMs found out in the soils are not inhibitory for plants.


Asunto(s)
Ecosistema , Metales Pesados/análisis , Parques Recreativos , Contaminantes del Suelo/análisis , Suelo/química , China , Ciudades , Humanos , Metales Pesados/toxicidad , Plantas/efectos de los fármacos , Medición de Riesgo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA