Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(3): 1528-1539, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495716

RESUMEN

We demonstrate the detection sensitivity of microplastic beads within fish tissue using stimulated Raman scattering (SRS) microscopy. The intrinsically provided chemical contrast distinguishes different types of plastic compounds within fish tissue. We study the size-dependent signal-to-noise ratio of the microplastic beads and determine a lower boundary for the detectable size. Our findings demonstrate how SRS microscopy can serve as a complementary modality to conventional Raman scattering imaging in order to detect and identify microplastic particles in fish tissue.

2.
Elife ; 102021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028352

RESUMEN

Dopaminergic signaling plays an important role in associative learning, including fear and extinction learning. Dopaminergic midbrain neurons encode prediction error-like signals when threats differ from expectations. Within the amygdala, GABAergic intercalated cell (ITC) clusters receive one of the densest dopaminergic projections, but their physiological consequences are incompletely understood. ITCs are important for fear extinction, a function thought to be supported by activation of ventromedial ITCs that inhibit central amygdala fear output. In mice, we reveal two distinct novel mechanisms by which mesencephalic dopaminergic afferents control ITCs. Firstly, they co-release GABA to mediate rapid, direct inhibition. Secondly, dopamine suppresses inhibitory interactions between distinct ITC clusters via presynaptic D1 receptors. Early extinction training augments both GABA co-release onto dorsomedial ITCs and dopamine-mediated suppression of dorso- to ventromedial inhibition between ITC clusters. These findings provide novel insights into dopaminergic mechanisms shaping the activity balance between distinct ITC clusters that could support their opposing roles in fear behavior.


Asunto(s)
Amígdala del Cerebelo/fisiología , Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Extinción Psicológica , Miedo , Interneuronas/fisiología , Mesencéfalo/fisiología , Potenciales de Acción , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Interneuronas/metabolismo , Masculino , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural , Vías Nerviosas/fisiología , Receptores de Dopamina D1/metabolismo , Factores Sexuales , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
3.
Reprod Toxicol ; 89: 124-129, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31288076

RESUMEN

Representatives of applied science (e.g. governmental organizations, academia, and industry) met to discuss the progress towards a harmonized human health risk assessment in developmental toxicology of plant protection products, biocidal products, and other environmental chemicals at the 9th Berlin Workshop on Developmental Toxicity held in September 2018. Within the focus of the scientific discussion were the future of in-vitro methods for developmental and reproductive toxicology, the potential relevance of alternative species in testing of developmental effects, and risk and hazard assessment of developmental and endocrine effects. Furthermore, the need for a harmonized terminology for classification of anomalies in laboratory animals in developmental toxicity studies aiming for human health risk assessment was determined. Here, the DevTox database was identified as an extremely valuable tool. Overall, the participants agreed that still one of the biggest challenges for testing developmental toxicity in the 21st century is the development of animal-free test strategies and alternatives to animal testing that could provide human-relevant information in a rapid, efficient, and mechanistically informative manner.


Asunto(s)
Alternativas al Uso de Animales/métodos , Bases de Datos Factuales/tendencias , Reproducción/efectos de los fármacos , Toxicología/métodos , Alternativas al Uso de Animales/tendencias , Animales , Berlin , Medición de Riesgo , Especificidad de la Especie , Terminología como Asunto , Toxicología/tendencias
4.
Artículo en Inglés | MEDLINE | ID: mdl-31354846

RESUMEN

BACKGROUND: Extracts from Viscum album L. (VE) are used in the complementary cancer therapy in Europe for decades. VE contain several compounds like the mistletoe lectins (MLs) 1-3 and viscotoxins and also several minor ingredients. Since mistletoe lectin 1 (ML-1) has been described as the main component of VE harboring antitumor activity, purified native or recombinant ML-1 has been recently used in clinical trials. MLs stimulate the immune system, induce cytotoxicity, are able to modify the expression of cancer-associated genes, and influence the proliferation and motility of tumor cells. OBJECTIVE: In this study our goal was to determine anticancer effects of the VE ISCADOR Qu, of recombinant ML-1 (Aviscumine), and of native ML-1 in the treatment of glioblastoma (GBM), the most common and highly malignant brain tumor in adults. Additionally we were interested whether these drugs, used in combination with a temozolomide-(TMZ)-based radio-chemotherapy, provide synergistic effects. METHODS: Cell culture assays, ex vivo murine hippocampal brain slice cultures, human GBM cryosections, and a xenograft orthotopic glioblastoma mouse model were used. RESULTS: In cells, the expression of the ML receptor CD75s, which is also expressed in GBM specimen, but not in normal brain, correlates with the drug-induced cytotoxicity. In GBM cells, the drugs induce cell death in a concentration-dependent manner and reduce cell growth by inducing cell cycle arrest in the G2/M phase. The cell cycle arrest was paralleled by modifications in the expression of cell cycle regulating genes. ML containing drugs, if combined with glioma standard therapy, provide synergistic and additive anticancer effects. Despite not reaching statistical significance, a single intratumoral application of Aviscumine prolonged the median survival of GBM mice longer than tumor irradiation. Moreover, intratumorally applied Aviscumine prolonged the survival of GBM-bearing mice if used in combination with irradiation and TMZ for further 6.5 days compared to the radio-chemotherapy. CONCLUSION: Our results suggest that an adjuvant treatment of glioma patients with ML-containing drugs might be beneficial.

5.
Cell Rep ; 25(4): 852-861.e7, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355492

RESUMEN

The functional role of AMPA receptor (AMPAR)-mediated synaptic signaling between neurons and oligodendrocyte precursor cells (OPCs) remains enigmatic. We modified the properties of AMPARs at axon-OPC synapses in the mouse corpus callosum in vivo during the peak of myelination by targeting the GluA2 subunit. Expression of the unedited (Ca2+ permeable) or the pore-dead GluA2 subunit of AMPARs triggered proliferation of OPCs and reduced their differentiation into oligodendrocytes. Expression of the cytoplasmic C-terminal (GluA2(813-862)) of the GluA2 subunit (C-tail), a modification designed to affect the interaction between GluA2 and AMPAR-binding proteins and to perturb trafficking of GluA2-containing AMPARs, decreased the differentiation of OPCs without affecting their proliferation. These findings suggest that ionotropic and non-ionotropic properties of AMPARs in OPCs, as well as specific aspects of AMPAR-mediated signaling at axon-OPC synapses in the mouse corpus callosum, are important for balancing the response of OPCs to proliferation and differentiation cues.


Asunto(s)
Diferenciación Celular , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Receptores AMPA/metabolismo , Animales , Axones/metabolismo , Linaje de la Célula , Proliferación Celular , Potenciales Postsinápticos Excitadores , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Neuroglía/metabolismo , Subunidades de Proteína/metabolismo , Retroviridae/fisiología
6.
Glob Chang Biol ; 24(10): 4532-4543, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29856108

RESUMEN

While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide-ranging trend of nutrient decrease (re-oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.


Asunto(s)
Cambio Climático , Eutrofización , Fitoplancton , Biodiversidad , Biomasa , Ecosistema , Lagos , Fitoplancton/fisiología , Estanques
7.
PLoS One ; 10(10): e0140449, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26461029

RESUMEN

Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).


Asunto(s)
Agua Dulce , Fitoplancton/fisiología , Temperatura , Agua , Biodiversidad , Fenómenos Químicos , Cadena Alimentaria , Características de la Residencia , Factores de Tiempo
8.
Reprod Toxicol ; 57: 140-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26073002

RESUMEN

This article is a report of the 8th Berlin Workshop on Developmental Toxicity held in May 2014. The main aim of the workshop was the continuing harmonization of terminology and innovations for methodologies used in the assessment of embryo- and fetotoxic findings. The following main topics were discussed: harmonized categorization of external, skeletal, visceral and materno-fetal findings into malformations, variations and grey zone anomalies, aspects of developmental anomalies in humans and laboratory animals, and innovations for new methodologies in developmental toxicology. The application of Version 2 terminology in the DevTox database was considered as a useful improvement in the categorization of developmental anomalies. Participants concluded that initiation of a project for comparative assessments of developmental anomalies in humans and laboratory animals could support regulatory risk assessment and university-based training. Improvement of new methodological approaches for alternatives to animal testing should be triggered for a better understanding of developmental outcomes.


Asunto(s)
Terminología como Asunto , Toxicología , Anomalías Inducidas por Medicamentos , Animales , Humanos , Medición de Riesgo , Teratógenos/toxicidad , Toxicología/métodos
9.
Front Behav Neurosci ; 8: 64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24634648

RESUMEN

Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC), and medial prefrontal cortex (mPFC) participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA), the area that we identify as a major target of these projections. We find that BA principal neurons (PNs) and local BA interneurons (INs) receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...