Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 37(3): 278-286, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27397436

RESUMEN

MicroRNAs (miRNA) are short single-stranded RNA sequences that have a role in the post-transcriptional regulation of genes. The identification of tissue specific or enriched miRNAs has great potential as novel safety biomarkers. One longstanding goal is to associate the increase of miRNA in biofluids (e.g., plasma and urine) with tissue-specific damage. Next-generation sequencing (miR-seq) was used to analyze changes in miRNA profiles of tissue, plasma and urine samples of rats treated with either a nephrotoxicant (cisplatin) or one of two hepatotoxicants (acetaminophen [APAP] or carbon tetrachloride [CCL4 ]). Analyses with traditional serum chemistry and histopathology confirmed that toxicant-induced organ damage was specific. In animals treated with cisplatin, levels of five miRNAs were significantly altered in the kidney, 14 in plasma and six in urine. In APAP-treated animals, five miRNAs were altered in the liver, 74 in plasma and six in urine; for CCL4 the changes were five, 20 and 6, respectively. Cisplatin treatment caused an elevation of miR-378a in the urine, confirming the findings of other similar studies. There were 17 in common miRNAs elevated in the plasma after treatment with either APAP or CCL4 . Four of these (miR-122, -802, -31a and -365) are known to be enriched in the livers of rats. Interestingly, the increase of serum miR-802 in both hepatotoxicant treatments was comparable to that of the well-known liver damage marker miR-122. Taken together, comparative analysis of urine and plasma miRNAs demonstrated their utility as biomarkers of organ injury. Copyright © 2016 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedades Renales , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , MicroARNs , Acetaminofén/farmacología , Animales , Biomarcadores/sangre , Biomarcadores/orina , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/orina , Cisplatino/farmacología , Modelos Animales de Enfermedad , Riñón/patología , Enfermedades Renales/sangre , Enfermedades Renales/orina , Hígado/patología , Masculino , MicroARNs/sangre , MicroARNs/orina , Ratas Sprague-Dawley
2.
BMC Genomics ; 17: 649, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27535741

RESUMEN

BACKGROUND: MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest, and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and evaluation of the first dog miRNA tissue atlas is described here. RESULTS: Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein administration in rat and dog. CONCLUSION: The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology. Once validated, these tissue enriched miRNAs could be combined into a powerful qPCR screening panel to identify organ toxicity during early drug development.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/genética , Transcriptoma , Animales , Biomarcadores , Análisis por Conglomerados , Biología Computacional/métodos , Perros , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Anotación de Secuencia Molecular , Especificidad de Órganos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...