Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 192: 114730, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147547

RESUMEN

Coffee husks are the main by-product of the coffee industry and have been traditionally discarded in the environment or used as fertilizers. However, recent studies have shown that coffee husks have bioactive compounds, such as phenolics and fiber-bound macro antioxidants, offering a range of potential health benefits. This study evaluated the antioxidant capacity, cytoprotective/cytotoxic properties, and stimulatory effects on the relative abundance of selected intestinal bacterial populations of individuals with diabetes of organic coffee husks. Organic coffee husk had good antioxidant capacity, maintained under simulated gastric conditions, with more than 50% of antioxidant capacity remaining. Organic coffee husk exerted cytoprotective properties in Caco-2 cells, indicating that cellular functions were not disturbed, besides not inducing oxidation. Overall, organic coffee husk promoted positive effects on the abundance of distinct intestinal bacterial groups of individuals with diabetes during in vitro colonic fermentation, with a higher relative abundance of Bifidobacterium spp., indicating the availability of components able to reach the colon to be fermented by intestinal microbiota. Organic coffee husk could be a circular material to develop new safe and pesticide-free functional ingredients with antioxidant and potential beneficial effects on human intestinal microbiota.


Asunto(s)
Antioxidantes , Café , Microbioma Gastrointestinal , Humanos , Antioxidantes/farmacología , Células CACO-2 , Café/química , Microbioma Gastrointestinal/efectos de los fármacos , Fermentación , Diabetes Mellitus , Coffea/química , Bacterias/efectos de los fármacos
2.
Food Res Int ; 188: 114433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823827

RESUMEN

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Asunto(s)
Antiinflamatorios , Antioxidantes , Neuroglía , Proteína de Suero de Leche , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Glutatión/metabolismo , Péptidos/farmacología , Óxido Nítrico/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
3.
Nutr Res ; 122: 101-112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215571

RESUMEN

Obesity is a health problem that involves fat accumulation in adipose and other tissues and causes cell dysfunction. Long-chain saturated fatty acids can induce and propagate inflammation, which may also contribute to the brain alterations found in individuals with obesity. Fatty acids accumulate in astrocytes in situations of blood‒brain barrier disruption, such as inflammatory conditions. Furthermore, the increase in tumor necrosis factor-alpha (TNF-α) and S100 calcium-binding protein B (S100B) secretion is considered an essential component of the inflammatory response. We hypothesize that through their action on astrocytes, long-chain saturated fatty acids mediate some of the brain alterations observed in individuals with obesity. Here, we investigate the direct effect of long-chain fatty acids on astrocytes. Primary astrocyte cultures were incubated for 24 hours with myristic, palmitic, stearic, linoleic, or α-linolenic acids (25-100 µM). All saturated fatty acids tested led to an increase in TNF-α secretion, but only palmitic acid, one of the most common fatty acids, increased S100B secretion, indicating that S100B secretion is probably not caused in response to TNF-α release. Palmitic acid also caused nuclear migration of nuclear factor kappa B. Long-chain saturated fatty acids did not alter cell viability or redox status. In conclusion, long-chain saturated fatty acids can alter astrocytic homeostasis and may contribute to brain disorders associated with obesity, such as neuroinflammation.


Asunto(s)
Ácido Palmítico , Factor de Necrosis Tumoral alfa , Humanos , Ácido Palmítico/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Astrocitos/metabolismo , Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Obesidad , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología
4.
Food Chem ; 443: 138515, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277934

RESUMEN

In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.


Asunto(s)
Residuos Industriales , Hidrolisados de Proteína , Animales , Carne in Vitro , Carne/análisis , Albúmina Sérica Bovina
5.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068900

RESUMEN

S100B, a homodimeric Ca2+-binding protein, is produced and secreted by astrocytes, and its extracellular levels have been used as a glial marker in brain damage and neurodegenerative and psychiatric diseases; however, its mechanism of secretion is elusive. We used primary astrocyte cultures and calcium measurements from real-time fluorescence microscopy to investigate the role of intracellular calcium in S100B secretion. In addition, the dimethyl sulfoxide (DMSO) effect on S100B was investigated in vitro and in vivo using Wistar rats. We found that DMSO, a widely used vehicle in biological assays, is a powerful S100B secretagogue, which caused a biphasic response of Ca2+ mobilization. Our data show that astroglial S100B secretion is triggered by the increase in intracellular Ca2+ and indicate that this increase is due to Ca2+ mobilization from the endoplasmic reticulum. Also, blocking plasma membrane Ca2+ channels involved in the Ca2+ replenishment of internal stores decreased S100B secretion. The DMSO-induced S100B secretion was confirmed in vivo and in ex vivo hippocampal slices. Our data support a nonclassic vesicular export of S100B modulated by Ca2+, and the results might contribute to understanding the mechanism underlying the astroglial release of S100B.


Asunto(s)
Astrocitos , Dimetilsulfóxido , Ratas , Animales , Ratas Wistar , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/metabolismo , Astrocitos/metabolismo , Colforsina/farmacología , Secretagogos/farmacología , Calcio/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Retículo Endoplásmico/metabolismo , Células Cultivadas
6.
Food Res Int ; 173(Pt 1): 113291, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803604

RESUMEN

Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from ß-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.


Asunto(s)
Antioxidantes , Suero Lácteo , Humanos , Antioxidantes/química , Células CACO-2 , Suero Lácteo/metabolismo , Células Endoteliales/metabolismo , Proteína de Suero de Leche/química , Péptidos/química , Digestión
7.
Foods ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37685216

RESUMEN

Sunflower (Helianthus annuus L.) and African palm kernel (Elaeis guineensis Jacq.) are among the most cultivated in the world regarding oil extraction. The oil industry generates a large amount of meal as a by-product, which can be a source of nutrients and bioactive compounds. However, the physiological effects of bioactive compounds in such matrices are only valid if they remain bioavailable and bioactive after simulated gastrointestinal digestion. This study evaluated the chemical composition and antioxidant and prebiotic potential of de-oiled sunflower (DS) and de-oiled palm kernel (DP) meal after in vitro digestion. The DS sample had the highest protein content and the best chemical score, in which lysine was the limiting amino acid. Digested samples showed increased antioxidant activity, measured by in vitro methods. The digested DS sample showed a better antioxidant effect compared to DP. Moreover, both samples managed to preserve DNA supercoiling in the presence of the oxidizing agent. The insoluble fractions after digestion stimulated the growth of prebiotic bacterium, similar to inulin. In conclusion, simulated gastrointestinal digestion promoted in both matrices an increase in protein bioaccessibility and antioxidant capacity, pointing to a metabolic modulation favorable to the organism.

8.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37385826

RESUMEN

The production of probiotic bacteria requires specific and expensive culture media for maintain their viability and metabolic response during gastro-intestinal transit and cell adhesion process. The aim of this study was to compare the ability of the potential probiotic Laticaseibacillus paracasei ItalPN16 to grow in plain sweet whey (SW) and acid whey (AW), evaluating changes in some probiotic properties related to the culture media. Pasteurized SW and AW were suitable media for L. paracasei growth, since counts above 9 Log CFU/ml were achieved using <50% of the total sugars in both whey samples after 48 h at 37°C. The L. paracasei cells obtained from AW or SW cultures showed increased resistance to pH 2.5 and 3.5, higher autoaggregation, and lower cell hydrophobicity, as compared with the control of MRS. SW also improved the biofilm formation ability and cell adhesion capability to Caco-2 cells. Our results indicate that the L. paracasei adaptation to the SW conditions, inducing metabolic changes that improved its stability to acid stress, biofilm formation, autoaggregation, and cell adhesion properties, which are important functional probiotic properties. Overall, the SW could be considered as low-cost culture medium for sustainable biomass production of L. paracasei ItalPN16.


Asunto(s)
Queso , Lacticaseibacillus paracasei , Probióticos , Humanos , Lacticaseibacillus , Suero Lácteo , Queso/microbiología , Células CACO-2 , Probióticos/metabolismo , Medios de Cultivo
9.
J Food Biochem ; 46(12): e14383, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181391

RESUMEN

The growing value of industrial collagen by-products has given rise to interest in extracting them from different species of animals. Intrinsic protein structure variation of collagen sources and its hydrolysis can bring about different bioactivities. This study aimed to characterize and evaluate the differences in vitro biological potential of commercial bovine (BH), fish (FH), and porcine hydrolysates (PH) regarding their antioxidant and hypoglycemic activities. All samples showed percentages above 90% of protein content, with high levels of amino acids (glycine, proline, and hydroxyproline), responsible for the specific structure of collagen. The BH sample showed a higher degree of hydrolysis (DH) (8.7%) and a higher percentage of smaller than 2 kDa peptides (74.1%). All collagens analyzed in vitro showed inhibition of pancreatic enzymes (α-amylase and α-glucosidase), with the potential to prevent diabetes mellitus. The PH sample showed higher antioxidant activities measured by ORAC (67.08 ± 4.23 µmol Trolox Eq./g) and ABTS radical scavenging (65.69 ± 3.53 µmol Trolox Eq./g) methods. For the first time, DNA protection was analyzed to hydrolyzed collagen peptides, and the FH sample showed a protective antioxidant action to supercoiled DNA both in the presence (39.51%) and in the absence (96.36%) of AAPH (reagent 2,2'-azobis(2-amidinopropane)). The results confirmed that the source of native collagen reflects on the bioactivity of hydrolyzed collagen peptides, probably due to its amino acid composition. PRACTICAL APPLICATIONS: Our data provide new application for collagen hydrolysates with hypoglycemiant and antioxidant activity. These data open discussion for future studies on the additional benefits arising from collagen peptide consumption for the prevention of aging complications or hyperglycemic conditions as observed in chronic diseases such as diabetes mellitus type II (DM 2). The confirmation of these results can open new market areas for the use of collagen with pharmacological applications or to produce new supplements. Furthermore, provides a solution for waste collagen from meat industries and adds value to the product.


Asunto(s)
Antioxidantes , Glucosa , Animales , Bovinos , Porcinos , Antioxidantes/química , Péptidos/química , Péptido Hidrolasas , Colágeno/química , Aminoácidos , Peces/metabolismo
10.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(5): 548-556, Sept.-Oct. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1403772

RESUMEN

Objective: To assess differences in blood inflammatory cytokines between people with alcohol use disorder (AUD) and healthy controls (HC). Methods: Searches were performed from inception through April 14, 2021. Meta-analyses with random-effects models were used to calculate the standardized mean difference ([SMD], 95%CI), and potential sources of heterogeneity were explored trough meta-regressions and subgroup analysis. Results: The meta-analysis included 23 studies on the following 14 cytokines: tumor necrosis factor (TNF)-α, IL-1, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-13, IL15, interferon (IFN)-γ and sCD14. There were significantly higher concentrations of IL-6 (n=462 AUD and 408 HC; SMD = 0.523; 95%CI 0.136-0.909; p = 0.008) in AUD than HC. No significant differences were found in the other 13 cytokines. Conclusion: We found that IL-6 levels were significantly higher in individuals with AUD than HC and that other cytokines were not altered. This can be explained by the small number of studies, their methodological heterogeneity, and confounding factors (active use, abstinence, quantity, and physical or psychiatric illnesses, for example). Despite a great deal of evidence about alcohol and inflammatory diseases, studies assessing the role of neuroimmune signaling in the development and severity of AUD are still lacking.

11.
Braz J Psychiatry ; 44(5): 548-556, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-35995431

RESUMEN

OBJECTIVE: To assess differences in blood inflammatory cytokines between people with alcohol use disorder (AUD) and healthy controls (HC). METHODS: Searches were performed from inception through April 14, 2021. Meta-analyses with random-effects models were used to calculate the standardized mean difference ([SMD], 95%CI), and potential sources of heterogeneity were explored trough meta-regressions and subgroup analysis. RESULTS: The meta-analysis included 23 studies on the following 14 cytokines: tumor necrosis factor (TNF)-a, IL-1, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-13, IL15, interferon (IFN)-g and sCD14. There were significantly higher concentrations of IL-6 (n=462 AUD and 408 HC; SMD = 0.523; 95%CI 0.136-0.909; p = 0.008) in AUD than HC. No significant differences were found in the other 13 cytokines. CONCLUSION: We found that IL-6 levels were significantly higher in individuals with AUD than HC and that other cytokines were not altered. This can be explained by the small number of studies, their methodological heterogeneity, and confounding factors (active use, abstinence, quantity, and physical or psychiatric illnesses, for example). Despite a great deal of evidence about alcohol and inflammatory diseases, studies assessing the role of neuroimmune signaling in the development and severity of AUD are still lacking.


Asunto(s)
Alcoholismo , Humanos , Citocinas , Interleucina-6 , Etanol , Factor de Necrosis Tumoral alfa
12.
Curr Res Food Sci ; 5: 687-697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465643

RESUMEN

The bioaccessibility and the bioavailability of iron complexed to peptides (active) in microparticles forms contained in dry beverages formulations were evaluated. The peptide-iron complexes microparticles were obtained by spray drying and added in three dry formulations (tangerine, strawberry, and chocolate flavors). The peptides isolated by iron ion affinity (IMAC-Fe III) had their biological activity predicted by BIOPEP® database and were evaluated by molecular coupling. The bioaccessibility was evaluated by solubility and dialysability and the bioavalability was assessed by Caco-2 cellular model. The proportion 10:1 of peptide-iron complexes presented higher rates of bioaccessibility (49%) and bioavailability (56%). The microparticle with peptide-iron complex showed greater solubility after digestion (39.1%), bioaccessibility (19.8%), and bioavailability (34.8%) than the ferrous sulfate salt (control) for the three assays (10.2%; 12.9%; 9.7%, respectively). Tangerine and strawberry formulations contributed to the iron absorption according to the results of bioaccessibility (36.2%, 30.0% respectively) and bioavailability (80.5%, 84.1%, respectively). The results showed that iron peptide complexation and microencapsulation process improve the bioaccessibility and bioavailability when incorporated into formulations.

13.
J Psychiatr Res ; 143: 556-562, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33218750

RESUMEN

Identifying the profile of risky behaviors among drivers is central to propose effective interventions. Due to the multidimensional and overlapping aspects of risky driving behaviors, cluster analysis can provide additional insights in order to identify specific subgroups of risk. This study aimed to identify clusters of driving risk behavior (DRB) among car drivers, and to verify intra-cluster differences concerning clinical and sociodemographic variables. We approached a total of 12,231 drivers and we included 6392 car drivers. A cluster algorithm was used to identify groups of car drivers in relation to the DRB: driving without a seat belt (SB), exceeding the speed limit (SPD), using a cell phone while driving (CELL), and driving after drinking alcohol (DUI). The algorithm classified drivers within five different DRB profiles. In cluster 1 (20.1%), subjects with a history of CELL. In cluster 2 (41.4%), drivers presented no DRB. In cluster 3 (9.3%), all drivers presented SPD. In cluster 4 (12.5%), drivers presented all DRB. In cluster 5 (16.6%), all drivers presented DUI. Clusters with DUI-related offenses (4 and 5) comprised more men (81.9 and 78.8%, respectively) than the overall sample (63.4%), with more binge drinking (50.9 and 45.7%) and drug use in the previous year (13.5 and 8.6%). Cluster 1 had a high years of education (14.4 ± 3.4) and the highest personal income (Md = 3000 IQR [2000-5000]). Cluster 2 had older drivers (46.6 ± 15), and fewer bingers (10.9%). Cluster 4 had the youngest drivers (34.4 ± 11.4) of all groups. Besides reinforcing previous literature data, our study identified five unprecedented clusters with different profiles of drivers regarding DRB. We identified an original and heterogeneous group of drivers with only CELL misuse, as well as other significant differences among clusters. Hence, our findings show that targeted interventions must be developed for each subgroup in order to effectively produce safe behavior in traffic.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Consumo de Bebidas Alcohólicas , Etanol , Humanos , Masculino , Asunción de Riesgos
14.
Trends Psychiatry Psychother ; 42(2): 147-152, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32696889

RESUMEN

Introduction The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has a key role in drug addiction susceptibility. In addition to the well-known relationship between cortisol and the HPA axis, other molecules are involved with stress response and could modify the HPA activation, such as the neuropeptide Y (NPY), which has anxiolytic proprieties. There are few studies evaluating the effect of NPY levels on addiction, especially in crack cocaine dependence. Objective To evaluate NPY in crack users during early withdrawal to determine its relationship with drug use and cortisol levels. Methods We analyzed 25 male inpatient crack users. Serum NPY levels were measured at admission and discharge (mean of 24 days). Morning salivary cortisol was measured at admission. Results Serum NPY levels at admission and discharge were very similar. Lower NPY levels at discharge were associated with higher lifetime crack use. Also, a negative correlation was found between morning cortisol and delta NPY (NPY discharge - NPY admission). Conclusion These preliminary findings indicate that crack use influences the modulation of NPY levels and modifies stress response. The NPY pathway may play an important role in the pathophysiology of crack addiction, and the anxiolytic effect of NPY may be impaired in crack users. Future studies should consider NPY as a measurable indicator of the biological state in addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/sangre , Cocaína Crack , Hidrocortisona/sangre , Neuropéptido Y/sangre , Estrés Psicológico/sangre , Síndrome de Abstinencia a Sustancias/sangre , Adulto , Humanos , Pacientes Internos , Masculino , Persona de Mediana Edad
15.
Neurochem Int ; 131: 104538, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31430518

RESUMEN

The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less. However, there are a few studies evaluating the different features of these cells which may put into question the validity of using them as astrocyte models. The aim of this study was to compare primary cultures (PC) with two cell lines - immortalized astrocytes and C6 cells, in terms of protein characterization, morphology and metabolic functional activity. Our results showed, under the same culture condition, that immortalized astrocytes and C6 are positive for differentiated astrocytic markers (eg. GFAP, S100B, AQP4 and ALDH1L1), although expressing them in less quantities then primary astrocyte cultures. Glutamate metabolism and cell communication are reduced in proliferative cells. However, glucose uptake is elevated in C6 lineage cells in comparison with primary astrocytes, probably due to their tumorigenic origin and high proliferation rate. Immortalized astrocytes presented a lower growth rate than C6 cells, and a similar basal morphology as primary astrocytes. However, they did not prove to be as good reproductive models of some of the classic astrocytic functions, such as S100B secretion and GFAP content, especially while under stimulation. In contrast, C6 cells presented similar results in comparison to primary astrocytes in response to stimuli. Here we provide a functional comparison of three astrocytic models, in an attempt to select the most suitable model for the study of astrocytes, optimizing the research in this area of knowledge.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Neoplasias Encefálicas/patología , Comunicación Celular , Línea Celular , Proliferación Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioma/patología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Inmunohistoquímica , Masculino , Cultivo Primario de Células , Ratas , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
16.
Neurochem Res ; 44(2): 301-311, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30387069

RESUMEN

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, ß-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.


Asunto(s)
Astrocitos/metabolismo , Hipocampo/efectos de los fármacos , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Animales , Astrocitos/efectos de los fármacos , Bicuculina/farmacología , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Masculino , Muscimol/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Wistar , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo
17.
Mol Neurobiol ; 56(5): 3538-3551, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30145785

RESUMEN

Diabetes mellitus is a metabolic disorder that results in glucotoxicity and the formation of advanced glycated end products (AGEs), which mediate several systemic adverse effects, particularly in the brain tissue. Alterations in glutamatergic neurotransmission and cognitive impairment have been reported in DM. Exendin-4 (EX-4), an analogue of glucagon-like peptide-1 (GLP-1), appears to have beneficial effects on cognition in rats with chronic hyperglycemia. Herein, we investigated the ability of EX-4 to reverse changes in AGE content and glutamatergic transmission in an animal model of DM looking principally at glutamate uptake and GluN1 subunit content of the N-methyl-D-aspartate (NMDA) receptor. Additionally, we evaluated the effects of EX-4 on in vitro models and the signaling pathway involved in these effects. We found a decrease in glutamate uptake and GluN1 content in the hippocampus of diabetic rats; EX-4 was able to revert these parameters, but had no effect on the other parameters evaluated (glycemia, C-peptide, AGE levels, RAGE, and glyoxalase 1). EX-4 abrogated the decrease in glutamate uptake and GluN1 content caused by methylglyoxal (MG) in hippocampal slices, in addition to leading to an increase in glutamate uptake in astrocyte culture cells and hippocampal slices under basal conditions. The effect of EX-4 on glutamate uptake was mediated by the phosphatidylinositide 3-kinases (PI3K) signaling pathway, which could explain the protective effect of EX-4 in the brain tissue, since PI3K is involved in cell metabolism, inhibition of apoptosis, and reduces inflammatory responses. These results suggest that EX-4 could be used as an adjuvant treatment for brain impairment associated with excitotoxicity.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Exenatida/uso terapéutico , Ácido Glutámico/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Exenatida/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Piruvaldehído/metabolismo , Ratas Wistar , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Estreptozocina , Transmisión Sináptica/efectos de los fármacos
18.
Oxid Med Cell Longev ; 2017: 9574201, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28685011

RESUMEN

The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Lactoilglutatión Liasa/metabolismo , Piruvaldehído/metabolismo , Animales , Humanos , Ratas , Ratas Wistar
19.
Neurotoxicology ; 62: 46-55, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28506823

RESUMEN

Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/patología , Amoníaco/sangre , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glutatión/metabolismo , Hipocampo/efectos de los fármacos , Hiperamonemia/inducido químicamente , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Transportadores de Anión Orgánico/metabolismo , Ratas , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Simportadores/metabolismo , Ureasa/toxicidad
20.
Brain Res ; 1655: 242-251, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984020

RESUMEN

Physical exercise can induce brain plasticity and reduce the cognitive decline observed in type 1 diabetes mellitus (T1DM). We investigated the effects of physical exercise to prevent or reverse spatial memory deficits produced by diabetes and some biochemical and immunohistochemical changes in hippocampal astrocytes of T1DM model. In this study, 56 male Wistar rats were divided in four groups: trained control (TC), non-trained control (NTC), trained diabetic (TD) and non-trained diabetic (NTD). 27 days after streptozotocin-induced (STZ) diabetes, the exercise groups were submitted to 5 weeks of aerobic exercise. All groups were assessed in place recognition (PR) test before and after training. The glial fibrillary acidic protein (GFAP) positive astrocytes were evaluated using planar morphology, optical densitometry and Sholl's concentric circles method. Glucose and glutamate uptake, reduced glutathione (GSH) and glutamine synthetase (GS) levels were measured using biochemical assays. Our main results are: 1-Exercise reverses spatial memory impairments generated by T1DM; 2-Exercise increases GSH and GS in TC but not in TD rats; 3-Exercise increases density of GFAP positive astrocytes in the TC and TD groups and increases astrocytic ramification in TD animals. Our findings indicate that physical exercise reverses the cognitive deficits present in T1DM and induces important biochemical and immunohistochemical astrocytic changes.


Asunto(s)
Astrocitos/fisiología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Terapia por Ejercicio , Hipocampo/fisiopatología , Trastornos de la Memoria/terapia , Animales , Astrocitos/patología , Glucemia/fisiología , Peso Corporal/fisiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 1/psicología , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal/fisiología , Distribución Aleatoria , Ratas Wistar , Reconocimiento en Psicología/fisiología , Carrera/fisiología , Memoria Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA