Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(14): 142502, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640383

RESUMEN

A precision measurement of the ß^{+} decay of ^{8}B was performed using the Beta-decay Paul Trap to determine the ß-ν angular correlation coefficient a_{ßν}. The experimental results were combined with new ab initio symmetry-adapted no-core shell-model calculations to yield the second-most precise measurement from Gamow-Teller decays, a_{ßν}=-0.3345±0.0019_{stat}±0.0021_{syst}. This value agrees with the standard model value of -1/3 and improves uncertainties in ^{8}B by nearly a factor of 2. By combining results from ^{8}B and ^{8}Li, a tight limit on tensor current coupling to right-handed neutrinos was obtained. A recent global evaluation of all other precision ß decay studies suggested a nonzero value for right-handed neutrino coupling in contradiction with the standard model at just above 3σ. The present results are of comparable sensitivity and do not support this finding.

2.
Phys Rev Lett ; 130(19): 192502, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243659

RESUMEN

We present the first measurement of the α-ß-ν angular correlation in the Gamow-Teller ß^{+} decay of ^{8}B. This was accomplished using the Beta-decay Paul Trap, expanding on our previous work on the ß^{-} decay of ^{8}Li. The ^{8}B result is consistent with the V-A electroweak interaction of the standard model and, on its own, provides a limit on the exotic right-handed tensor current relative to the axial-vector current of |C_{T}/C_{A}|^{2}<0.013 at the 95.5% confidence level. This represents the first high-precision angular correlation measurements in mirror decays and was made possible through the use of an ion trap. By combining this ^{8}B result with our previous ^{8}Li results, we demonstrate a new pathway for increased precision in searches for exotic currents.

3.
Phys Rev Lett ; 131(26): 262701, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215364

RESUMEN

Nuclear isomer effects are pivotal in understanding nuclear astrophysics, particularly in the rapid neutron-capture process where the population of metastable isomers can alter the radioactive decay paths of nuclei produced during astrophysical events. The ß-decaying isomer ^{128m}Sb was identified as potentially impactful since the ß-decay pathway along the A=128 isobar funnels into this state bypassing the ground state. We report the first direct mass measurements of the ^{128}Sb isomer and ground state using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. We find mass excesses of -84564.8(25) keV and -84608.8(21) keV, respectively, resulting in an excitation energy for the isomer of 43.9(33) keV. These results provide the first key nuclear data input for understanding the role of ^{128m}Sb in nucleosynthesis, and we show that it will influence the flow of the rapid neutron-capture process.

4.
Phys Rev Lett ; 128(20): 202502, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657880

RESUMEN

The electroweak interaction in the standard model is described by a pure vector-axial-vector structure, though any Lorentz-invariant component could contribute. In this Letter, we present the most precise measurement of tensor currents in the low-energy regime by examining the ß-ν[over ¯] correlation of trapped ^{8}Li ions with the Beta-decay Paul Trap. We find a_{ßν}=-0.3325±0.0013_{stat}±0.0019_{syst} at 1σ for the case of coupling to right-handed neutrinos (C_{T}=-C_{T}^{'}), which is consistent with the standard model prediction.

5.
Phys Rev Lett ; 128(20): 202503, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657888

RESUMEN

We place unprecedented constraints on recoil corrections in the ß decay of ^{8}Li, by identifying a strong correlation between them and the ^{8}Li ground state quadrupole moment in large-scale ab initio calculations. The results are essential for improving the sensitivity of high-precision experiments that probe the weak interaction theory and test physics beyond the standard model. In addition, our calculations predict a 2^{+} state of the α+α system that is energetically accessible to ß decay but has not been observed in the experimental ^{8}Be energy spectrum, and has an important effect on the recoil corrections and ß decay for the A=8 systems. This state and an associated 0^{+} state are notoriously difficult to model due to their cluster structure and collective correlations, but become feasible for calculations in the ab initio symmetry-adapted no-core shell-model framework.

6.
Phys Rev Lett ; 118(26): 262502, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707906

RESUMEN

How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on ^{10}C at TRIUMF and ab initio nuclear reaction calculations, we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.

7.
Phys Rev Lett ; 114(19): 192502, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024166

RESUMEN

The first conclusive evidence of a dipole resonance in ^{11}Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in ^{11}Li. The first ab initio calculations in the coupled cluster framework are also presented.

8.
Phys Rev Lett ; 113(8): 082501, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192091

RESUMEN

Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of (20,21)Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by 6 orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of (21)Mg is in good agreement but that the mass of (20)Mg deviates by 3 σ. These measurements reduce the uncertainties in the masses of (20,21)Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin nonconserving universal sd USDA and USDB Hamiltonians or isospin nonconserving interactions based on chiral two- and three-nucleon forces.

9.
Phys Rev Lett ; 113(8): 082502, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192092

RESUMEN

In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, ^{124}In and ^{124}Cs) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ßß) decay.

10.
Phys Rev Lett ; 109(3): 032506, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861844

RESUMEN

We present precision Penning trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system, the mass of 51K was measured for the first time, and the precision of the (51,52)Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, 52Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces.

11.
Rev Sci Instrum ; 83(2): 02A912, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380253

RESUMEN

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

12.
Phys Rev Lett ; 107(27): 272501, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22243307

RESUMEN

Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed ß emitter 74Rb (T(1/2)=65 ms). The determination of its atomic mass and an improved Q(EC) value are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...