Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Injury ; 55(7): 111596, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797000

RESUMEN

BACKGROUND: Atrophic pseudoarthrosis is a serious complication with an incidence of 5-10 % of bone fractures located in the diaphysis of long bones. Standard treatments involve aggressive surgical procedures and re-interventions requiring the use of autografts from the iliac crest as a source of bone-forming biological activity (Standard of Care, SoC). In this context, regenerative ex vivo expanded osteogenic cell-based medicines could be of interest. Particularly, Mesenchymal Stromal Cells (MSC) offer new prospects to promote bone tissue repair in pseudoarthrosis by providing biological activity in an osteoconductive and osteoinductive environment. METHODS: We conducted a phase IIa, prospective, randomised, parallel, two-arms, open-label with blinded assessor pilot clinical trial to compare SoC vs. a tissue-engineered product (TEP), composed of autologous bone marrow (BM)-derived MSCs loaded onto allogeneic decellularised, lyophilised spongy bone cubes, in a cohort of 20 patients with non-hypertrophic pseudoarthrosis of long bones. Patients were followed up for 12 months. Radiological bone healing was evaluated by standard X-ray and computed tomography (CT) scanning. Quality of life was measured using the EUROQOL-5D questionnaire. RESULTS: Ten patients were randomized to TEP and 10 to SoC with iliac crest autograft. Manufacturing of TEP was feasible and reproducibly achieved. TEP implantation in the bone defect was successful in all cases and none of the 36 adverse events (AE) reported were related to the treatment. Efficacy analyses were performed in the Full Analysis Set (FAS) population, which included 17 patients after 3 patients withdrew from the study. The degree of consolidation, estimated by measuring Hounsfield units (HU) on CT, showed no significant differences between the two treatment groups at 12 months post treatment (main efficacy variable) (p = 0.4835) or at 6 months. CONCLUSIONS: Although only a small number of patients were included in our study, it is notable that no significant differences were observed between the experimental treatment and SoC, thus suggesting TEP as an alternative where autograft is not available or contraindicated.

2.
Bone Rep ; 16: 101157, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34950754

RESUMEN

BACKGROUND: Pseudoarthrosis or non-union is a complication with an incidence of 5-10% of bone fractures, most frequently located in the diaphysis of long bones. The management of this complication is addressed by means of complex surgical procedures and is a concern for orthopaedic and trauma surgeons nowadays. The use of biomarkers for diagnosing patients at risk of non-union would help us to establish special measures for early corrective treatment. METHODS: Prospective exploratory pilot study with a cohort of 20 patients diagnosed of non-hypertrophic pseudoarthrosis of long bones who were treated surgically with either autologous bone graft or a Tissue Engineering Product composed of bone marrow-derived Mesenchymal Stromal Cells. Patients were followed for 12 months and plasma blood samples were obtained to determine circulating levels of Transforming Growth Factor Beta 1 and Beta 2 (TGF-ß1 and TGF-ß2, respectively) at inclusion, and at 1 week, 2 weeks, and months 1, 2, 3, 6 and 12 after surgery. Radiological bone healing was evaluated by the Tomographic Union Score (TUS). RESULTS: Basal levels of TGF-ß1 and TGF-ß2 were determined in the twenty patients (26,702 ± 14,537 pg/mL and 307.8 ± 83.1 pg/mL, respectively). Three of them withdrew from the study, so complete follow-up was conducted on 17 patients (9 successfully healed vs. 8 that did not heal). Statistically significant differences between the bone healing group and the non-union group were found at month 12 for both TGF-ß1 (p = 0.005) and TGF-ß2 (p = 0.02). CONCLUSIONS: TGF-ß1 and TGF-ß2 are biomarkers that correlate with clinical evidence of bone regeneration and may be used to monitor patients, although early predictive value after intervention needs to be further studied in combination with other molecules.

3.
J Tissue Eng Regen Med ; 12(1): e532-e540, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27684058

RESUMEN

Pseudoarthrosis is a relatively frequent complication of fractures, in which the lack of mechanical stability and biological stimuli results in the failure of bone union, most frequently in humerus and tibia. Treatment of recalcitrant pseudoarthrosis relies on the achievement of satisfactory mechanical stability combined with adequate local biology. Herein we present two cases of atrophic pseudoarthrosis that received a tissue-engineering product (TEP) composed of autologous bone marrow-derived mesenchymal stromal cells (BM-MSC) combined with deantigenized trabecular bone particles from a tissue bank. The feasibility of the treatment and osteogenic potential of the cell-based medicine was first demonstrated in an ovine model of critical size segmental tibial defect. Clinical-grade autologous BM-MSC were produced following a good manufacturing practice-compliant bioprocess. Results were successful in one case, with pseudoarthrosis resolution, and inconclusive in the other one. The first patient presented atrophic pseudoarthrosis of the humeral diaphysis and was treated with osteosynthesis and TEP resulting in satisfactory consolidation at month 6. The second case presented a recalcitrant pseudoarthrosis of the proximal tibia and the Masquelet technique was followed before filling the defect with the TEP. This patient presented a neuropathic pain syndrome unrelated to the treatment that forced the amputation of the extremity 3 months later. In this case, the histological analysis of the tissue formed at the defect site provided evidence of neovascularization but no overt bone remodelling activity. It is concluded that the use of expanded autologous BM-MSC to treat pseudoarthrosis was demonstrated to be feasible and safe, provided that no clinical complications were reported, and early signs of effectiveness were observed. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Seudoartrosis/patología , Seudoartrosis/terapia , Investigación Biomédica Traslacional , Adulto , Animales , Atrofia , Células de la Médula Ósea/citología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteogénesis , Ovinos , Tibia/patología , Tibia/cirugía , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...