Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577480

RESUMEN

The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate in vivo studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Drosophila Dynein heavy chain (Dhc). We find that mutations associated with human neurological disease cause a range of defects in larval and adult flies, including impaired cargo trafficking in neurons. We also describe a novel mutation in the microtubule-binding domain (MTBD) of Dhc that, remarkably, causes metaphase arrest of mitotic spindles in the embryo but does not impair other dynein-dependent processes. We demonstrate that the mitotic arrest is independent of dynein's well-established roles in silencing the spindle assembly checkpoint. In vitro reconstitution and optical trapping assays reveal that the mutation only impairs the performance of dynein under load. In silico all-atom molecular dynamics simulations show that this effect correlates with increased flexibility of the MTBD, as well as an altered orientation of the stalk domain, with respect to the microtubule. Collectively, our data point to a novel role of dynein in anaphase progression that depends on the motor operating in a specific load regime. More broadly, our work illustrates how cytoskeletal transport processes can be dissected in vivo by manipulating mechanical properties of motors.

2.
J Cell Sci ; 135(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362526

RESUMEN

Proper mitotic spindle orientation depends on the correct anchorage of astral microtubules to the cortex. It relies on the remodeling of the cell cortex, a process not fully understood. Annexin A2 (Anx2; also known as ANXA2) is a protein known to be involved in cortical domain remodeling. Here, we report that in HeLa cell early mitosis, Anx2 recruits the scaffold protein Ahnak at the cell cortex facing spindle poles, and the distribution of both proteins is controlled by cell adhesion. Depletion of either protein or impaired cortical Ahnak localization result in delayed anaphase onset and unstable spindle anchoring, which leads to altered spindle orientation. We find that Ahnak is present in a complex with dynein-dynactin. Furthermore, Ahnak and Anx2 are required for correct dynein and NuMA (also known as NUMA1) cortical localization and dynamics. We propose that the Ahnak-Anx2 complex influences the cortical organization of the astral microtubule-anchoring complex, and thereby mitotic spindle positioning in human cells. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Anexina A2 , Dineínas , Anafase , Anexina A2/genética , Anexina A2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas de Neoplasias/metabolismo , Huso Acromático/metabolismo
3.
PLoS Genet ; 18(4): e1010145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377889

RESUMEN

The maintenance of a restricted pool of asymmetrically dividing stem cells is essential for tissue homeostasis. This process requires the control of mitotic progression that ensures the accurate chromosome segregation. In addition, this event is coupled to the asymmetric distribution of cell fate determinants in order to prevent stem cell amplification. How this coupling is regulated remains poorly described. Here, using asymmetrically dividing Drosophila neural stem cells (NSCs), we show that Polo kinase activity levels determine timely Cyclin B degradation and mitotic progression independent of the spindle assembly checkpoint (SAC). This event is mediated by the direct phosphorylation of Polo kinase by Aurora A at spindle poles and Aurora B kinases at centromeres. Furthermore, we show that Aurora A-dependent activation of Polo is the major event that promotes NSC polarization and together with the SAC prevents brain tumor growth. Altogether, our results show that an Aurora/Polo kinase module couples NSC mitotic progression and polarization for tissue homeostasis.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Proteínas Serina-Treonina Quinasas , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Neoplasias/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética , Huso Acromático/metabolismo
4.
Cell Rep ; 37(4): 109895, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706235

RESUMEN

Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated. A leading pool is located at the basal cleavage site and a second pool accumulates at the midzone before traveling to the cleavage site. The cortical centralspindlin population requires peripheral astral microtubules and the chromosome passenger complex for efficient recruitment. Loss of this pool does not prevent cytokinesis but enhances centralspindlin signaling at the midzone, leading to equatorial furrow repositioning and decreased size asymmetry. These data show that basal furrow positioning in neuroblasts results from a competition between different centralspindlin pools in which the cortical pool is dominant.


Asunto(s)
Citocinesis , Microtúbulos , Células-Madre Neurales , Animales , Drosophila melanogaster , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células-Madre Neurales/metabolismo , Células-Madre Neurales/ultraestructura
5.
Curr Biol ; 31(4): 684-695.e6, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33259793

RESUMEN

Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins. Our data suggest that during early mitosis, dTBCE and nuclear pore proteins become enriched in the nucleus, where they interact with the Ran GTPase to promote dynamic tubulin enrichment. We propose that this novel mechanism enhances microtubule nucleation around chromatin, thereby facilitating mitotic spindle assembly.


Asunto(s)
Cromatina , Microtúbulos , Tubulina (Proteína) , Animales , Drosophila , Mitosis , Huso Acromático , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
6.
PLoS Biol ; 18(8): e3000762, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760088

RESUMEN

Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mitosis , Proteínas Serina-Treonina Quinasas/genética , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/ultraestructura , Centrosoma/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interfase , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Optogenética/métodos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína Fluorescente Roja
7.
J Cell Sci ; 133(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32094264

RESUMEN

A novel 2,3-benzodiazepine-4 derivative, named 1g, has recently been shown to function as an anti-proliferative compound. We now show that it perturbs the formation of a functional mitotic spindle, inducing a spindle assembly checkpoint (SAC)-dependent arrest in human cells. Live analysis of individual microtubules indicates that 1g promotes a rapid and reversible reduction in microtubule growth. Unlike most anti-mitotic compounds, we found that 1g does not interfere directly with tubulin or perturb microtubule assembly in vitro The observation that 1g also triggers a SAC-dependent mitotic delay associated with chromosome segregation in Drosophila neural stem cells, suggests that it targets a conserved microtubule regulation module in humans and flies. Altogether, our results indicate that 1g is a novel promising anti-mitotic drug with the unique properties of altering microtubule growth and mitotic spindle organization.


Asunto(s)
Benzodiazepinas , Mitosis , Benzodiazepinas/farmacología , Humanos , Microtúbulos , Huso Acromático , Tubulina (Proteína)/genética
8.
Development ; 146(8)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30936181

RESUMEN

Drosophila Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear. Ensconsin contains a microtubule (MT)-binding domain (MBD) and a Kinesin-binding domain (KBD). Rescue experiments show that only full-length Ensconsin restores the spindle length phenotype. KBD expression rescues ensc centrosome separation defects in NBs, but not the fast oocyte streaming and the localization of Staufen and Gurken. Interestingly, the KBD can stimulate Kinesin-1 targeting to MTs in vivo and in vitro We propose that a KBD and Kinesin-1 complex is a minimal activation module that increases Kinesin-1 affinity for MTs. Addition of the MBD present in full-length Ensconsin allows this process to occur directly on the MT and triggers higher Kinesin-1 targeting. This dual regulation by Ensconsin is essential for optimal Kinesin-1 targeting to MTs in oocytes, but not in NBs, illustrating the importance of adapting Kinesin-1 recruitment to different biological contexts.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Animales , Centrosoma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/metabolismo
9.
Biomolecules ; 9(1)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650622

RESUMEN

Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.


Asunto(s)
Aurora Quinasa A/metabolismo , Centrosoma/metabolismo , Animales , Proteína A Centromérica/metabolismo , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteína Quinasa C/metabolismo , Huso Acromático/metabolismo
10.
Results Probl Cell Differ ; 61: 183-210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28409305

RESUMEN

Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.


Asunto(s)
División Celular Asimétrica/fisiología , Drosophila melanogaster/fisiología , Células-Madre Neurales/citología , Animales , Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Modelos Animales
11.
J Cell Biol ; 204(7): 1111-21, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24687279

RESUMEN

The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1.


Asunto(s)
Centrosoma/metabolismo , Drosophila melanogaster/citología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Células-Madre Neurales/fisiología , Animales , Células Cultivadas , Segregación Cromosómica , Proteínas de Drosophila/metabolismo , Interfase , Cinesinas/metabolismo , Microscopía Fluorescente , Mitosis , Multimerización de Proteína , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...