RESUMEN
Studies with seedlings of tropical rainforest trees ( Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9 degrees N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 micromol photons m-2 s-1. After 2-4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, alpha-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and alpha-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation.
Asunto(s)
Calophyllum/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Luz Solar , Árboles/crecimiento & desarrollo , Verbenaceae/crecimiento & desarrollo , Aclimatación , Biomasa , Dióxido de Carbono/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Temperatura , Clima TropicalRESUMEN
In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.