RESUMEN
The second wave of COVID-19 occurred in South America in early 2021 and was mainly driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic analyses were performed. Our findings revealed that the Lambda variant was first detected in Argentina in January 2021 and steadily increased in frequency until it peaked in April 2021, with continued detection throughout the year. Phylodynamic analyses showed that at least 18 introductions of the Lambda variant into the country occurred, with nine of them having evidence of onward local transmission. The spatial--temporal reconstruction showed that Argentine clades were associated with Lambda sequences from Latin America and suggested an initial diversification in the Metropolitan Area of Buenos Aires before spreading to other regions in Argentina. Genetic analyses of genome sequences allowed us to describe the mutational patterns of the Argentine Lambda sequences and detect the emergence of rare mutations in an immunocompromised patient. Our study highlights the importance of genomic surveillance in identifying the introduction and geographical distribution of the SARS-CoV-2 Lambda variant, as well as in monitoring the emergence of mutations that could be involved in the evolutionary leaps that characterize variants of concern.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Argentina/epidemiología , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , MutaciónRESUMEN
The COVID-19 pandemic has lately been driven by Omicron. This work aimed to study the dynamics of SARS-CoV-2 Omicron lineages during the third and fourth waves of COVID-19 in Argentina. Molecular surveillance was performed on 3431 samples from Argentina, between EW44/2021 and EW31/2022. Sequencing, phylogenetic and phylodynamic analyses were performed. A differential dynamic between the Omicron waves was found. The third wave was associated with lineage BA.1, characterized by a high number of cases, very fast displacement of Delta, doubling times of 3.3 days and a low level of lineage diversity and clustering. In contrast, the fourth wave was longer but associated with a lower number of cases, initially caused by BA.2, and later by BA.4/BA.5, with doubling times of about 10 days. Several BA.2 and BA.4/BA.5 sublineages and introductions were detected, although very few clusters with a constrained geographical distribution were observed, suggesting limited transmission chains. The differential dynamic could be due to waning immunity and an increase in population gatherings in the BA.1 wave, and a boosted population (for vaccination or recent prior immunity for BA.1 infection) in the wave caused by BA2/BA.4/BA.5, which may have limited the establishment of the new lineages.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Argentina/epidemiología , Pandemias , FilogeniaRESUMEN
INTRODUCTION: Coinfection with two SARS-CoV-2 viruses is still a very understudied phenomenon. Although next generation sequencing methods are very sensitive to detect heterogeneous viral populations in a sample, there is no standardized method for their characterization, so their clinical and epidemiological importance is unknown. MATERIAL AND METHODS: We developed VICOS (Viral COinfection Surveillance), a new bioinformatic algorithm for variant calling, filtering and statistical analysis to identify samples suspected of being mixed SARS-CoV-2 populations from a large dataset in the framework of a community genomic surveillance. VICOS was used to detect SARS-CoV-2 coinfections in a dataset of 1,097 complete genomes collected between March 2020 and August 2021 in Argentina. RESULTS: We detected 23 cases (2%) of SARS-CoV-2 coinfections. Detailed study of VICOS's results together with additional phylogenetic analysis revealed 3 cases of coinfections by two viruses of the same lineage, 2 cases by viruses of different genetic lineages, 13 were compatible with both coinfection and intra-host evolution, and 5 cases were likely a product of laboratory contamination. DISCUSSION: Intra-sample viral diversity provides important information to understand the transmission dynamics of SARS-CoV-2. Advanced bioinformatics tools, such as VICOS, are a necessary resource to help unveil the hidden diversity of SARS-CoV-2.
Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Filogenia , Genoma Viral , Biología Computacional , Secuencia de ConsensoRESUMEN
Lipase from Thermomyces lanuginosus (TLL) has been covalently immobilized on heterofunctional octyl-vinyl agarose. That way, the covalently immobilized enzymes will have identical orientation. Then, it has blocked using hexyl amine (HEX), ethylenediamine (EDA), Gly and Asp. The initial activity/stability of the different biocatalysts was very different, being the most stable the biocatalyst blocked with Gly. These biocatalysts had been utilized to analyze if the enzyme activity could decrease differently along thermal inactivation courses depending on the utilized substrate (that is, if the enzyme specificity was altered during its inactivation using 4 different substrates to determine the activity), and if this can be altered by the nature of the blocking agent and the inactivation conditions (we use pH 5, 7 and 9). Results show great changes in the enzyme specificity during inactivation (e.g., activity versus triacetin was much more quickly lost than versus the other substrates), and how this was modulated by the immobilization protocol and inactivation conditions. The difference in the changes induced by immobilization and inactivation were confirmed by fluorescence studies. That is, the functional and structural analysis of partially inactivated immobilized enzyme showed that their inactivation pathway is strongly depended on the support features and inactivation conditions.
Asunto(s)
Enzimas Inmovilizadas/química , Eurotiales/enzimología , Proteínas Fúngicas/química , Lipasa/química , Microesferas , Sefarosa/análogos & derivados , Ácido Aspártico/química , Enzimas Inmovilizadas/metabolismo , Etilenodiaminas/química , Proteínas Fúngicas/metabolismo , Glicina/química , Lipasa/metabolismo , Especificidad por Sustrato , Sulfonas/química , Triacetina/químicaRESUMEN
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from ß-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected ß-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Asunto(s)
Enzimas Inmovilizadas/química , Enzimas/química , beta-Galactosidasa/química , Sitios de Unión/fisiología , Biomineralización/fisiología , Simulación por Computador , Estabilidad de Enzimas , Enzimas/metabolismo , Enzimas Inmovilizadas/metabolismo , Galactosa/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Oligosacáridos/química , Temperatura , beta-Galactosidasa/metabolismoRESUMEN
Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points⢠Most interesting alkyl hydroxycinnamates applications are summarized.⢠Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.⢠Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.
Asunto(s)
Biotecnología , Enzimas Inmovilizadas , Enzimas Inmovilizadas/metabolismo , EsterificaciónRESUMEN
The enzymatic synthesis of alkyl ferulates is an important reaction in cosmetic and pharmaceutical chemistries, since it may allow to expand the biorefinery concept valorizing biomass wastes enriched in ferulic acid. However, robust biocatalysts for that purpose are scarce. Herein, we have immobilized the type A feruloyl esterase from Aspergillus niger (AnFaeA) as cross-linked enzyme aggregates, employing chitosan as co-feeder (ChCLEAs). High immobilization yields and relative activity recovery were attained in all assessed conditions (> 93%). Furthermore, we enhanced the thermal stability of the soluble enzyme 32-fold. AnFaeA-ChCLEAs were capable to quantitatively perform the solvent-free direct esterification of short- to medium-chain alkyl ferulates (C4-C12) in less than 24 h. By raising the operational temperature to 50 °C, AnFaeA-ChCLEAs transformed 350 mM ferulic acid into isopentyl ferulate with a space-time yield of 46.1 g of product × L-1 × day-1, 73-fold higher than previously reported. The overall sustainability of this alkyl ferulate production bioprocess is supported by the high total turnover number (TTN 7 × 105) and the calculated green metrics (E factor = 30). Therefore, we herein present a robust, efficient, and versatile heterogeneous biocatalyst useful for the synthesis of a wide diversity of alkyl ferulates. KEY POINTS: ⢠CLEAs of feruloyl esterase A from A. niger using chitosan as co-feeder were obtained. ⢠Microenvironment of the biocatalysts allowed to obtain C1 to C18 alkyl ferulates. ⢠Biocatalyst at boundary conditions showed a high productivity of 46 g/L day. Graphical Abstract.
Asunto(s)
Aspergillus niger , Quitosano , Hidrolasas de Éster CarboxílicoRESUMEN
Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6â¯mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5â¯mg of BSA and 15â¯mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60⯰C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30⯰C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50â¯mM, reached 95 % conversion after 24â¯h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.
Asunto(s)
Aspergillus niger/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Butiratos/metabolismo , Hidrolasas de Éster Carboxílico/química , Enzimas Inmovilizadas/química , Glutaral/química , Metacrilatos/química , Polímeros/química , Albúmina Sérica Bovina/química , Dióxido de Silicio/químicaRESUMEN
The 2'-N-deoxyribosyltransferases [NDT; EC 2.4.2.6] are a group of enzymes widely used as biocatalysts for nucleoside biosynthesis. In this work, the molecular cloning, expression and purification of a novel NDT from Lactobacillus animalis (LaNDT) have been reported. On the other hand, biocatalyst stability has been significantly enhanced by multipoint covalent immobilization using a hetero-functional support activated with nickel-chelates and glyoxyl groups. The immobilized enzyme could be reused for more than 300â¯h and stored during almost 3 months without activity loss. Besides, the obtained derivative (Ni2+-Gx-LaNDT) was able to biosynthesize 88â¯mg floxuridine/g biocatalyst after 1â¯h of reaction. In this work, a green bioprocess by employing an environmentally friendly methodology was developed, which allowed the obtaining of a compound with proven anti-tumor activity. Therefore, the obtained enzymatic biocatalyst meets the requirements of high activity, stability, and short reaction times needed for low-cost production in a future preparative application.
Asunto(s)
Clonación Molecular/efectos de los fármacos , Enzimas Inmovilizadas/metabolismo , Lactobacillus/enzimología , Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Lactobacillus/química , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transferasas/química , Transferasas/genéticaRESUMEN
Ribavirin is a synthetic guanosine analogue with a broad-spectrum of antiviral activity. It is clinically effective against several viruses, such as respiratory syncytial virus, several hemorrhagic fever viruses and HCV when combined with pegylated interferon-α. Phosphopentomutase (PPM) catalyzes the transfer of intramolecular phosphate (from C1 to C5) on ribose, and is involved in pentose phosphate pathway and in purine metabolism. Reactions catalyzed by this enzyme are useful for nucleoside analogues production. However, out of its natural environment PPM is unstable and its stability is affected by parameters such as pH and temperature. Therefore, to irreversibly immobilize this enzyme, it needs to be stabilized. In this work, PPM from Escherichia coli ATCC 4157 was overexpressed, purified, stabilized at alkaline pH and immobilized on several supports. The activity of different additives as stabilizing agents was evaluated, and the best result was found using 10% (v/v) glycerol. Under this condition, PPM maintained 86% of its initial activity at pH 10 after 18h incubation, which allowed further covalent immobilization of this enzyme on glyoxyl-agarose with a high yield. This is the first time that PPM has been immobilized by multipoint covalent attachment on glyoxyl support, this derivative being able to biosynthesize ribavirin from α-d-ribose-5-phosphate.
Asunto(s)
Antivirales/metabolismo , Enzimas Inmovilizadas/metabolismo , Proteínas de Escherichia coli/metabolismo , Fosfotransferasas/metabolismo , Ribavirina/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Excipientes , Concentración de Iones de Hidrógeno , Modelos Moleculares , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/aislamiento & purificación , TemperaturaRESUMEN
The biomineralisation of metal phosphates is a promising approach to develop more efficient nanobiocatalysts; however, the interactions between the protein and the inorganic mineral are poorly understood. Elucidating which protein regions most likely participate in the mineral formation will guide the fabrication of more efficient biocatalysts based on metal-phosphate nanoflowers. We have biomineralised the lipase from Thermomyces lanuginosus using three calcium, zinc and copper phosphates to fabricate different types of bio-inorganic nanoflowers. To better understand how the biomineralisation process affects the enzyme properties, we have computationally predicted the protein regions with a higher propensity for binding Ca2+, Cu2+ and Zn2+. These binding sites can be considered as presumable nucleation points where the biomineralisation process starts and explain why different metals can form bio-inorganic nanoflowers of the same enzyme with different functional properties. The formation of calcium, copper and zinc phosphates in the presence of this lipase gives rise to nanoflowers with different morphologies and different enzymatic properties such as activity, stability, hyperactivation and activity-pH profile; these functional differences are supported by structural studies based on fluorescence spectroscopy and can be explained by the different locations of the predicted nucleation sites for the different metals. Among the three metals used herein, the mineralisation of this lipase with zinc-phosphate enables the fabrication of bio-inorganic nanoflowers 34 times more stable than the soluble enzyme. These bio-inorganic nanoflowers were reused for 8 reaction cycles achieving 100% yield in the hydrolysis of p-nitrophenol butyrate but losing more than 50% of their initial activity after 6 operational cycles. Finally, this heterogeneous biocatalyst was more active and enantioselective than the soluble enzyme (ee = 79%(R)) towards the kinetic resolution of rac-1-phenylethyl acetate yielding the R enantiomer with ee = 84%.
RESUMEN
Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity.
Asunto(s)
Manipulación de Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Sefarosa/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Frutas/química , Frutas/enzimología , Glioxilatos/química , Concentración de Iones de Hidrógeno , Poligalacturonasa/química , Prunus domestica/química , Prunus domestica/enzimología , Vitis/química , Vitis/enzimologíaRESUMEN
The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc.
RESUMEN
BACKGROUND: The analysis of the genomes of hepatitis B virus (HBV) identifies phylogenetic variants called genotypes, which may lead to distinct biological and clinical behaviors. OBJECTIVES: The aim of this study was to describe the current molecular epidemiology and genetic diversity of HBV in Córdoba, Argentina. STUDY DESIGN: A total of 52 HBV samples, 40 from HBV mono-infected and 12 from human immunodeficiency virus (HIV)-HBV co-infected patients, were sequenced in the S gene and in the basal core promoter-precore (BCP-pC) region. RESULTS: Presence of subgenotypes F1b (35%) and F4 (17.5%), subgenotype A2 (37.5%), C (5.0%) (subgenotype could not be defined) and D (5.0%) (subgenotype D2, and the other could not be defined) were observed among mono-infected patients. The co-infected individuals displayed a different genotype distribution: sub-genotype A2 was the most common (75.0%), followed by subgenotype F1b (25.0%). CONCLUSIONS: These results showed two epidemiologic scenarios: the mono-infected population may represent the ethnic composition of the current human population of Córdoba, where the Amerindian (genotype F) and European origins (subgenotype A2) account for the 90% of the samples; for the co-infected patients, the high prevalence of subgenotype A2 resemble previous analyses from Buenos Aires. In addition, mutations in hepatitis B surface antigen (HBsAg), polymerase and BCP-pC regions were identified, mainly in chronic or co-infected patients.
Asunto(s)
Variación Genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Hepatitis B Crónica/epidemiología , Hepatitis B Crónica/virología , Adulto , Argentina/epidemiología , Análisis por Conglomerados , ADN Polimerasa Dirigida por ADN/genética , Femenino , Genotipo , Infecciones por VIH/complicaciones , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Estudios Retrospectivos , Análisis de Secuencia de ADN , Homología de Secuencia , Adulto JovenRESUMEN
The diglycosidase α-rhamnosyl-ß-glucosidase (EC 3.2.1.168) from the fungus Acremonium sp. DSM24697 was immobilized on several agarose-based supports. Covalent multipoint immobilization onto glyoxyl-activated agarose was selected as the more stable preparation at high concentration of dimethyl sulfoxide (DMSO) and high temperature. The optimal conditions for the immobilization process involved an incubation of the enzyme with agarose beads containing 220 µmol of glyoxyl groups per gram at pH 10 and 25°C for 24 h. The hydrolysis of hesperidin carried out in 10% v/v DMSO at 60°C for 2 h reached 64.6% substrate conversion and a specific productivity of 2.40 mmol h(-1) g(-1). Under these conditions, the process was performed reutilizing the catalyst for up to 18 cycles, maintaining >80% of the initial activity and a constant productivity 2.96 ± 0.42 µmol(-1) h(-1) g(-1). To the best of our knowledge, such productivity is the highest achieved for hesperetin production through an enzymatic approach.
Asunto(s)
Acremonium/enzimología , Enzimas Inmovilizadas/metabolismo , Glicósido Hidrolasas/metabolismo , Hesperidina/metabolismo , Glicósido Hidrolasas/aislamiento & purificación , Microesferas , Sefarosa , Temperatura , Factores de TiempoRESUMEN
Este estudio evaluó la capacidad osteointegradora con dos tipos de implantes coralinos de porosidad diferente porites asteroides y acropora palmata. Esta capacidad fue evaluada por la restitución de tejido oseo, la fijación adecuada de las células primordiales oseas, la vascularización, la fuerza de fijación del implante y la restitución de las capacidades fisiológicas normales que se suprimen al realizar el defecto oseo. Un total de 21 conejos fueron intervenidos quirúrgicamente a los cuales se les realizó una osteotomía femoral de 5 mm. de diametro a cada especimen. Al cabo de 35 días se analizaron los resultados y se observó la capacidad que tiene la hidroxiapatita como coadyuvante en la cicatrización, la formació de osteoide de buena calidad, y una buena fijación del implante. Los implantes con porites asteroides se remoderalaron dentro del hueso de una forma muy dinámica favoreciendo a una rápida vascularización y remplazo progresivo por tejido oseo trabecular.
Asunto(s)
Fémur , Fijación Interna de Fracturas , Hidroxiapatitas , Osteotomía , Porosidad , Prótesis e ImplantesRESUMEN
Se presenta una revisión bibliográfica sobre la utilización de campos eléctricos de alta intensidad (CEAI) en la conservación de alimentos; se detallan los mecanismos de acción de los CEAI para inactivar microorganismos, ilustrando las variables más importantes en el proceso y la tecnología necesaria para la generación de pulsos de muy corta duración y alta intensidad del orden de microsegundos y KV/cm; se da una mirada general al estado del arte de esa tecnología y sus posibilidades de implementación en Colombia, teniendo en cuenta la capacidad tecnológica local