Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38828810

RESUMEN

Understanding core level shifts in aromatic compounds is crucial for the correct interpretation of x-ray photoelectron spectroscopy (XPS) of polycyclic aromatic hydrocarbons (PAHs), including acenes, as well as of styrenic polymers, which are increasingly relevant for the microelectronic industry, among other applications. The effect of delocalization through π aromatic systems on the stabilization of valence molecular orbitals has been widely investigated in the past. However, little has been reported on the impact on the deeper C1s core energy levels. In this work, we use first-principles calculations at the level of many body perturbation theory to compute the C1s binding energies of several aromatic systems. We report a C1s red shift in PAHs and acenes of increasing size, both in the gas phase and in the molecular crystal. C1s red shifts are also calculated for stacked benzene and naphthalene pairs at decreasing intermolecular distances. A C1s red shift is in addition found between oligomers of poly(p-hydroxystyrene) and polystyrene of increasing length, which we attribute to ring-ring interactions between the side-chains. The predicted shifts are larger than common instrumental errors and could, therefore, be detected in XPS experiments.

2.
J Phys Chem Lett ; 15(3): 834-839, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38235964

RESUMEN

The broadening in photoelectron spectra of polymers can be attributed to several factors, such as light source spread, spectrometer resolution, the finite lifetime of the hole state, and solid-state effects. Here, for the first time, we set up a computational protocol to assess the peak broadening induced for both core and valence levels by solid-state effects in four amorphous polymers by using a combination of density functional theory, many-body perturbation theory, and classical polarizable embedding. We show that intrinsic local inhomogeneities in the electrostatic environment induce a Gaussian broadening of 0.2-0.7 eV in the binding energies of both core and semivalence electrons, corresponding to a full width at half-maximum (FWHM) of 0.5-1.7 eV for the investigated systems. The induced broadening is larger in acrylate-based than in styrene-based polymers, revealing the crucial role of polar groups in controlling the roughness of the electrostatic landscape in the solid matrix.

3.
J Phys Chem Lett ; 13(37): 8666-8672, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36084286

RESUMEN

We propose a simple additive approach to simulate X-ray photoelectron spectra (XPS) of macromolecules based on the GW method. Single-shot GW (G0W0) is a promising technique to compute accurate core-electron binding energies (BEs). However, its application to large molecules is still unfeasible. To circumvent the computational cost of G0W0, we break the macromolecule into tractable building blocks, such as isolated monomers, and sum up the theoretical spectra of each component, weighted by their molar ratio. In this work, we provide a first proof of concept by applying the method to four test polymers and one copolymer and show that it leads to an excellent agreement with experiments. The method could be used to retrieve the composition of unknown materials and study chemical reactions, by comparing the simulated spectra with experimental ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...