Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 467: 133723, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359761

RESUMEN

Small microplastics (SMPs < 100 µm) can easily be transported over long distances far from their sources through the atmospheric pathways and reach even remote regions, including the Arctic. However, these sizes of MPs are mostly overlooked due to different analytical challenges; besides, their pathways through atmospheric depositions, such as snow depositions, are mostly unknown. The spatial variability in bulk snow samples was investigated for the first time in distinct sites (e.g., glaciers) near Ny Ålesund, the world-known northernmost permanent research settlement in the Svalbard Islands, to better comprehend the presence of SMP pollution in snow. Seasonal snow deposited over the tundra and the summits of different glaciers were also sampled. A sampling procedure was designed to obtain representative samples while minimizing plastic contamination, thanks to rigorous quality assurance and quality control protocol. SMPs' weight (µg SMP L-1) and deposition load (mg SMPs m-2) result from being lower in the remote glaciers, where they may be subject to long-range transport. The SMPs' minimum length was 20 µm, with the majority less than 100 µm. Regarding their size distribution, there was an increase in the size length deriving from the local input of the human presence near the scientific settlement. The presence of some polymers might be site-specific in relation to the pathways that affect their distribution at the sites studied. Also, from the snow surface layer collected at the same sites to evaluate the variability of SMPs during specific atmospheric deposition events, the results confirmed their higher weight and load in surface snow near the scientific settlement compared to the glaciers. The results will enhance the limited knowledge of the SMPs in polar atmospheric compartments and deposition processes.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895852

RESUMEN

BACKGROUND: Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS: H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS: KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION: Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.

3.
Nat Commun ; 14(1): 3273, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280205

RESUMEN

Size- and shape-tailored copper (Cu) nanocrystals can offer vicinal planes for facile carbon dioxide (CO2) activation. Despite extensive reactivity benchmarks, a correlation between CO2 conversion and morphology structure has not yet been established at vicinal Cu interfaces. Herein, ambient pressure scanning tunneling microscopy reveals step-broken Cu nanocluster evolutions on the Cu(997) surface under 1 mbar CO2(g). The CO2 dissociation reaction produces carbon monoxide (CO) adsorbate and atomic oxygen (O) at Cu step-edges, inducing complicated restructuring of the Cu atoms to compensate for increased surface chemical potential energy at ambient pressure. The CO molecules bound at under-coordinated Cu atoms contribute to the reversible Cu clustering with the pressure gap effect, whereas the dissociated oxygen leads to irreversible Cu faceting geometries. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy identifies the chemical binding energy changes in CO-Cu complexes, which proves the characterized real-space evidence for the step-broken Cu nanoclusters under CO(g) environments. Our in situ surface observations provide a more realistic insight into Cu nanocatalyst designs for efficient CO2 conversion to renewable energy sources during C1 chemical reactions.

4.
J Hazard Mater ; 452: 131317, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003004

RESUMEN

The primary environmental concern related to nuclear power is the production of radioactive waste hazardous to humans and the environment. The main scientific and technological problems to address this are related to the storage and disposal of the nuclear waste and monitoring the dispersion of radioactive species into the environment. In this work, we determined an anomalously high 14C activity, well above the modern natural background, on surface and seasonal snow sampled in early May 2019 on glaciers in the Hornsund fjord area (Svalbard). Due to the lack of local sources, the high snow concentrations of 14C suggest long-range atmospheric transport of nuclear waste particles from lower latitudes, where nuclear power plants and treatment stations are located. The analysis of the synoptic and local meteorological data allowed us to associate the long-range transport of this anomalous 14C concentration to an intrusion event of a warm and humid air mass that likely brought pollutants from Central Europe to the Arctic in late April 2019. Elemental and organic carbon, trace element concentration data, and scanning electron microscopy morphological analysis were performed on the same snow samples to better constrain the transport process that might have led to the high 14C radionuclide concentrations in Svalbard. In particular, the highest 14C values found in the snowpack (> 200 percent of Modern Carbon, pMC) were associated with the lowest OC/EC ratios (< 4), an indication of an anthropogenic industrial source, and with the presence of spherical particles rich in iron, zirconium, and titanium which, altogether, suggest an origin related to nuclear waste reprocessing plants. This study highlights the role of long-range transport in exposing Arctic environments to human pollution. Given that the frequency and intensity of these atmospheric warming events are predicted to increase due to ongoing climate change, improving our knowledge of their possible impact to Arctic pollution is becoming urgent.

5.
Angew Chem Int Ed Engl ; 62(25): e202302087, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37062698

RESUMEN

CO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni-doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass-specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce-O frustrated Lewis pair (FLP), Ni-O classical Lewis pair (CLP) and Ni-Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.


Asunto(s)
Dióxido de Carbono , Níquel , Gases , Hidrogenación , Iones
6.
Microbiome ; 11(1): 35, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864462

RESUMEN

BACKGROUND: Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS: We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS: While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS: These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.


Asunto(s)
Bacterias , Cubierta de Hielo , Teorema de Bayes , Estaciones del Año , Bacterias/genética , Biodiversidad
7.
Chem Mater ; 35(2): 529-538, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711051

RESUMEN

The surface chemistry of the initial growth during the first or first few precursor cycles in atomic layer deposition is decisive for how the growth proceeds later on and thus for the quality of the thin films grown. Yet, although general schemes of the surface chemistry of atomic layer deposition have been developed for many processes and precursors, in many cases, knowledge of this surface chemistry remains far from complete. For the particular case of HfO2 atomic layer deposition on a SiO2 surface from an alkylamido-hafnium precursor and water, we address this lack by carrying out an operando atomic layer deposition experiment during the first cycle of atomic layer deposition. Ambient-pressure X-ray photoelectron spectroscopy and density functional theory together show that the decomposition of the metal precursor on the stoichiometric SiO2 surface in the first half-cycle of atomic layer deposition proceeds via a bimolecular reaction mechanism. The reaction leads to the formation of Hf-bonded methyl methylene imine and free dimethylamine. In addition, ligand exchange takes place involving the surface hydroxyls adsorbed at defect sites of the SiO2 surface.

8.
Phys Chem Chem Phys ; 24(46): 28486-28494, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36408895

RESUMEN

We use synchrotron radiation-induced core level photoemission spectroscopy to investigate the influence of vacancies, produced by ion bombardment, on monolayer graphene/Ni(111) exposed to CO at pressures ranging from ultra-high vacuum (10-10 mbar) up to near ambient (5.6 mbar) conditions. CO intercalates at a rate which is comparable to the one observed in absence of defects and reacts via the Boudouard reaction producing additional carbon atoms and CO2. While the former attach to the graphene layer and extend it over areas previously covered by carbide, the CO2 molecules bind to the graphene vacancies forming epoxy-like bonds across them, thus mending the defects. The so-formed complexes give rise to a peak at 533.4 eV which persists upon evacuating the vacuum chamber at room temperature and which we assign to a covalently bonded species containing C and O.

10.
Angew Chem Int Ed Engl ; 60(49): 25988-25993, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34591358

RESUMEN

Self-metalation is a promising route to include a single metal atom in a tetrapyrrolic macrocycle in organic frameworks supported by metal surfaces. The molecule-surface interaction may provide the charge transfer and the geometric distortion of the molecular plane necessary for metal inclusion. However, at a metal surface the presence of an activation barrier can represent an obstacle that cannot be compensated by a higher substrate temperature without affecting the layer integrity. The formation of the intermediate state can be facilitated in some cases by oxygen pre-adsorption at the supporting metal surface, like in the case of 2H-TPP/Pd(100). In such cases, the activation barrier can be overcome by mild annealing, yielding the formation of desorbing products and of the metalated tetrapyrrole. We show here that the self-metalation of 2H-TPP at the Pd(100) surface can be promoted already at room temperature by the presence of an oxygen gas phase at close-to-ambient conditions via an Eley-Rideal mechanism.

11.
Phys Chem Chem Phys ; 23(30): 16224-16233, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34304262

RESUMEN

To advance the understanding of key electrochemical and photocatalytic processes that depend on the electronic structure of aqueous solutions, X-ray photoemission spectroscopy has become an invaluable tool, especially when practiced with liquid microjet setups. Determining vertical ionization energies referenced to the vacuum level, and binding energies referenced to the Fermi level, including the much-coveted reorganization energy of the oxidized species of a redox couple, requires that energy levels be properly defined. The present paper addresses specifically how the vacuum level "just outside the surface" can be known through the energy position of the rising edge of the secondary electrons, and how the Fermi level reference is uniquely determined via the introduction of a redox couple. Taking the case of the ferricyanide/ferrocyanide and ferric/ferrous couples, this study also tackles issues related to the electrokinetic effects inherent to the production of a liquid jet in a vacuum, which has become the standard water sample environment for photoemission experiments.

12.
Sci Total Environ ; 751: 141640, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32892077

RESUMEN

Nearly all ice core archives from the Arctic and middle latitudes (such as the Alps), apart from some very high elevation sites in Greenland and the North Pacific, are strongly influenced by melting processes. The increases in the average Arctic temperature has enhanced surface snow melting even of higher elevation ice caps, especially on the Svalbard Archipelago. The increase of the frequency and altitude of winter "rain on snow" events as well as the increase of the length of the melting season have had a direct impact on the chemical composition of the seasonal and permanent snow layers due to different migration processes of water-soluble species, such as inorganic ions. This re-allocation along the snowpack of ionic species could significantly modify the original chemical signal present in the annual snow. This paper aims to give a picture of the evolution of the seasonal snow strata with a daily time resolution to better understand: a) the processes that can influence deposition b) the distribution of ions in annual snow c) the impact of the presence of liquid water on chemical re-distribution within the annual snow pack. Specifically, the chemical composition of the first 100 cm of seasonal snow on the Austre Brøggerbreen Glacier (Spitsbergen, Svalbard Islands, Norway) was monitored daily from the 27th of March to the 31st of May 2015. The experimental period covered almost the entire Arctic spring until the melting season. This unique dataset gives us a daily picture of the snow pack composition, and helps us to understand the behaviour of cations (K+, Ca2+, Na+, Mg2+) and anions (Br-, I-, SO42-, NO3-, Cl-, MSA) in the Svalbard snow pack. We demonstrate that biologically related depositions occur only at the end of the snow season and that rain and melting events have different impacts on the snowpack chemistry.

13.
Chemosphere ; 267: 129335, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33352366

RESUMEN

Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g-1 for DC and 0.003 ng g-1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g-1 and between the LoD and 0.300 ng g-1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).


Asunto(s)
Cubierta de Hielo , Hierro , Regiones Antárticas , Regiones Árticas , Compuestos Ferrosos , Reproducibilidad de los Resultados , Svalbard
14.
J Phys Chem A ; 124(26): 5378-5388, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32491866

RESUMEN

Combining experimental and ab initio core-level photoelectron spectroscopy (periodic DFT and quantum chemistry calculations), we elucidated how ammonia molecules bond to the hydroxyls of the (H,OH)-Si(001) model surface at a temperature of 130 K. Indeed, theory evaluated the magnitude and direction of the N 1s (and O 1s) chemical shifts according to the nature (acceptor or donor) of the hydrogen bond and, when confronted to experiment, showed unambiguously that the probe molecule makes one acceptor and one donor bond with a pair of hydroxyls. The consistency of our approach was proved by the fact that the identified adsorption geometries are precisely those that have the largest binding strength to the surface, as calculated by periodic DFT. Real-time core-level photoemission enabled measurement of the adsorption kinetics of H-bonded ammonia and its maximum coverage (0.37 ML) under 1.5 × 10-9 mbar. Experimental desorption free energies were compared to the magnitude of the adsorption energies provided by periodic DFT calculations. Minority species were also detected on the surface. As in the case of H-bonded ammonia, DFT core-level calculations were instrumental to attribute these minority species to datively bonded ammonia molecules, associated with isolated dangling bonds remaining on the surface, and to dissociated ammonia molecules, resulting largely from beam damage.

15.
J Am Chem Soc ; 142(7): 3548-3563, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31935081

RESUMEN

Segregation of aliovalent dopant cations is a common degradation pathway on perovskite oxide surfaces in energy conversion and catalysis applications. Here we focus on resolving quantitatively how dopant segregation is affected by oxygen chemical potential, which varies over a wide range in electrochemical and thermochemical energy conversion reactions. We employ electrochemical polarization to tune the oxygen chemical potential over many orders of magnitude. Altering the effective oxygen chemical potential causes the oxygen nonstoichiometry to change in the electrode. This then influences the mechanisms underlying the segregation of aliovalent dopants. These mechanisms are (i) the formation of oxygen vacancies that couples to the electrostatic energy of the dopant in the perovskite lattice and (ii) the elastic energy of the dopant due to cation size mismatch, which also promotes the reaction of the dopant with O2 from the gas phase. The present study resolves these two contributions over a wide range of effective oxygen pressures. Ca-, Sr-, and Ba-doped LaMnO3 are selected as model systems, where the dopants have the same charge but different ionic sizes. We found that there is a transition between the electrostatically and elastically dominated segregation regimes, and the transition shifted to a lower oxygen pressure with increasing cation size. This behavior is consistent with the results of our ab initio thermodynamics calculations. The present study provides quantitative insights into how the elastic energy and the electrostatic energy determine the extent of segregation for a given overpotential and atmosphere relevant to the operating conditions of perovskite oxides in energy conversion applications.

16.
J Chem Phys ; 152(3): 034704, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968967

RESUMEN

The correlation between the structural phase transition (SPT) and oxygen vacancy in SrRuO3 (SRO) thin films was investigated by in situ X-ray diffraction (XRD) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In situ XRD shows that the SPT occurs from a monoclinic SRO phase to a tetragonal SRO phase near ∼200 °C, regardless of the pressure environment. On the other hand, significant core level shifts in both the Ru and Sr photoemission spectra are found under ultrahigh vacuum, but not under the oxygen pressure environment. The directions and behavior of the core level shift of Ru and Sr are attributed to the formation of oxygen vacancy across the SPT temperature of SRO. The analysis of in situ XRD and AP-XPS results provides an evidence for the formation of metastable surface oxide possibly due to the migration of internal oxygen atoms across the SPT temperature, indicating the close relationship between oxygen vacancy and SPT in SRO thin films.

18.
Sci Adv ; 4(7): eaat3151, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30027118

RESUMEN

The origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms. Interfacial metal-metal oxide nanostructures are then formed under chemical reaction environments at ambient pressure, which thus increases the catalytic activity for the CO oxidation reaction. Our in situ surface characterizations using ambient-pressure scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy exhibit (i) a Pt-skin layer on the Pt-Ni alloyed surface under ultrahigh vacuum, (ii) selective Ni segregation followed by the formation of NiO1-x clusters under oxygen gas, and (iii) the coexistence of NiO1-x clusters on the Pt-skin during the CO oxidation reaction. The formation of interfacial Pt-NiO1-x nanostructures is responsible for a highly efficient step in the CO oxidation reaction. Density functional theory calculations of the Pt3Ni(111) surface demonstrate that a CO molecule adsorbed on an exposed Pt atom with an interfacial oxygen from a segregated NiO1-x cluster has a low surface energy barrier of 0.37 eV, compared with 0.86 eV for the Pt(111) surface.

19.
Sci Rep ; 8(1): 6164, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670155

RESUMEN

The heterogeneous radiolysis of organic molecules in clays is a matter of considerable interest in astrochemistry and environmental sciences. However, little is known about the effects of highly ionizing soft X-rays. By combining monochromatized synchrotron source irradiation with in situ Near Ambient Pressure X-ray Photoelectron Spectroscopy (in the mbar range), and using the synoptic view encompassing both the gas and condensed phases, we found the water and pyridine pressure conditions under which pyridine is decomposed in the presence of synthetic Sr2+-hydroxyhectorite. The formation of a pyridine/water/Sr2+ complex, detected from the Sr 3d and N 1s core-level binding energies, likely presents a favorable situation for the radiolytic breaking of the O-H bond of water molecules adsorbed in the clay and the subsequent decomposition of the molecule. However, decomposition stops when the pyridine pressure exceeds a critical value. This observation can be related to a change in the nature of the active radical species with the pyridine loading. This highlights the fact that the destruction of the molecule is not entirely determined by the properties of the host material, but also by the inserted organic species. The physical and chemical causes of the present observations are discussed.

20.
Nanoscale ; 10(14): 6566-6580, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577122

RESUMEN

The investigation of nanocatalysts under ambient pressure by X-ray photoelectron spectroscopy gives access to a wealth of information on their chemical state under reaction conditions. Considering the paradigmatic CO oxidation reaction, a strong synergistic effect on CO catalytic oxidation was recently observed on a partly dewetted ZnO(0001)/Pt(111) single crystal surface. In order to bridge the material gap, we have examined whether this inverse metal/oxide catalytic effect could be transposed on supported ZnPt nanocatalysts deposited on rutile TiO2(110). Synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) operated at 1 mbar of O2 : CO mixture (4 : 1) was used at a temperature range between room temperature and 450 K. To tackle the complexity of the problem, we have also studied the catalytic activity of nanoparticles (NPs) of the same size, consisting of pure Pt and Zn nanoparticles (NPs), for which, moreover, NAP-XPS studies are a novelty. The comparative approach shows that the CO oxidation process is markedly different for the pure Pt and pure Zn NPs. For pure Pt NPs, CO poisoned the metallic surfaces at low temperature at the onset of CO2 evolution. In contrast, the pure Zn NPs first oxidize into ZnO, and trap carbonates at low temperature. Then they start to release CO2 in the gas phase, at a critical temperature, while continuously producing it. The pure Zn NPs are also immune to support encapsulation. The bimetallic nanoparticle borrows some of its characteristics from its two parent metals. In fact, the ZnPt NP, although produced by the sequential deposition of platinum and zinc, is platinum-terminated below the temperature onset of CO oxidation and poisoned by CO. Above the CO oxidation onset, the nanoparticle becomes Zn-rich with a ZnO shell. Pure Pt and ZnPt NPs present a very similar activity towards CO oxidation, in contrast with what is reported in a single crystal study. The present study demonstrates the effectiveness of NAP-XPS in the study of complex catalytic processes at work on nanocatalysts under near-ambient pressures, and highlights once more the difficulty of transposing single crystal surface observations to the case of nanoobjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...