Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773321

RESUMEN

The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.

2.
Nat Commun ; 14(1): 3497, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311770

RESUMEN

The endoplasmic reticulum (ER) is an organelle of nucleated cells that produces proteins, lipids and oligosaccharides. ER volume and activity are increased upon induction of unfolded protein responses (UPR) and are reduced upon activation of ER-phagy programs. A specialized domain of the ER, the nuclear envelope (NE), protects the cell genome with two juxtaposed lipid bilayers, the inner and outer nuclear membranes (INM and ONM) separated by the perinuclear space (PNS). Here we report that expansion of the mammalian ER upon homeostatic perturbations results in TMX4 reductase-driven disassembly of the LINC complexes connecting INM and ONM and in ONM swelling. The physiologic distance between ONM and INM is restored, upon resolution of the ER stress, by asymmetric autophagy of the NE, which involves the LC3 lipidation machinery, the autophagy receptor SEC62 and the direct capture of ONM-derived vesicles by degradative LAMP1/RAB7-positive endolysosomes in a catabolic pathway mechanistically defined as micro-ONM-phagy.


Asunto(s)
Estrés del Retículo Endoplásmico , Membrana Nuclear , Animales , Estrés del Retículo Endoplásmico/genética , Autofagia , Respuesta de Proteína Desplegada , Retículo Endoplásmico , Mamíferos
3.
EMBO J ; 40(15): e107240, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34152647

RESUMEN

Efficient degradation of by-products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER-associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER-phagy receptors for ER-to-lysosome-associated degradation (ERLAD). Demannosylation of N-linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro-collagen that cycles of de-/re-glucosylation of selected N-glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD-resistant misfolded proteins for FAM134B-driven lysosomal delivery. In summary, we show that mannose and glucose processing of N-glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Lisosomas/metabolismo , Polisacáridos/metabolismo , Animales , Calnexina/genética , Calnexina/metabolismo , Fibroblastos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Oligosacáridos/metabolismo , Procolágeno/genética , Procolágeno/metabolismo , Pliegue de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
4.
DNA Cell Biol ; 39(2): 226-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31895584

RESUMEN

Hunter's syndrome (mucopolysaccharidosis type II) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene. Motivated by the case of a child affected by this syndrome, we compared the intracellular fate of wild-type IDS (IDSWT) and four nonsense mutations of IDS (IDSL482X, IDSY452X, IDSR443X, and IDSW337X) generating progressively shorter forms of IDS associated with mild to severe forms of the disease. Our analyses revealed formylation of all forms of IDS at cysteine 84, which is a prerequisite for enzymatic activity. After formylation, IDSWT was transported within lysosomes, where it was processed in the mature form of the enzyme. The length of disease-causing deletions correlated with gravity of the folding and transport phenotype, which was anticipated by molecular dynamics analyses. The shortest form of IDS, IDSW337X, was retained in the endoplasmic reticulum (ER) and degraded by the ubiquitin-proteasome system. IDSR443X, IDSY452X, and IDSL482X passed ER quality control and were transported to the lysosomes, but failed lysosomal quality control, resulting in their rapid clearance and in loss-of-function phenotype. Failure of ER quality control inspection is an established cause of loss of function observed in protein misfolding diseases. Our data reveal that fulfillment of ER requirements might not be sufficient, highlight lysosomal quality control as the distal station to control lysosomal enzymes fitness and pave the way for alternative therapeutic interventions.


Asunto(s)
Codón sin Sentido/genética , Retículo Endoplásmico/genética , Iduronato Sulfatasa/genética , Lisosomas/metabolismo , Mucopolisacaridosis II/genética , Animales , Retículo Endoplásmico/metabolismo , Glicoproteínas/genética , Humanos , Ratones , Mucopolisacaridosis II/tratamiento farmacológico , Mutación/genética
5.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076131

RESUMEN

Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways. Here, we describe an ER-to-lysosome-associated degradation pathway (ERLAD) for proteasome-resistant polymers of alpha1-antitrypsin Z (ATZ). ERLAD involves the ER-chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER-resident ER-phagy receptor FAM134B, echoing the initiation of starvation-induced, receptor-mediated ER-phagy. However, in striking contrast to ER-phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7-positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single-membrane, ER-derived, ATZ-containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER-resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/genética , Proteolisis , alfa 1-Antitripsina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calnexina/genética , Calnexina/metabolismo , Retículo Endoplásmico/genética , Endosomas/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , alfa 1-Antitripsina/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
7.
Nat Cell Biol ; 18(11): 1173-1184, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27749824

RESUMEN

The endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins. On resolution of ER stress, ill-defined, selective autophagic programs remove excess ER components. Here we identify Sec62, a constituent of the translocon complex regulating protein import in the mammalian ER, as an ER-resident autophagy receptor. Sec62 intervenes during recovery from ER stress to selectively deliver ER components to the autolysosomal system for clearance in a series of events that we name recovER-phagy. Sec62 contains a conserved LC3-interacting region in the C-terminal cytosolic domain that is required for its function in recovER-phagy, but is dispensable for its function in the protein translocation machinery. Our results identify Sec62 as a critical molecular component in maintenance and recovery of ER homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Autofagia , Homeostasis , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/fisiología , Respuesta de Proteína Desplegada/fisiología
8.
Mol Cell ; 52(6): 783-93, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24239290

RESUMEN

Folding-defective proteins must be cleared efficiently from the endoplasmic reticulum (ER) to prevent perturbation of the folding environment and to maintain cellular proteostasis. Misfolded proteins engage dislocation machineries (dislocons) built around E3 ubiquitin ligases that promote their transport across the ER membrane, their polyubiquitylation, and their proteasomal degradation. Here, we report on the intrinsic instability of the HRD1 dislocon and the constitutive, rapid turnover of the scaffold protein HERP. We show that HRD1 dislocon integrity relies on the presence of HRD1 clients that interrupt, in a dose-dependent manner, the UBC6e/RNF5/p97/proteasome-controlled relay that controls HERP turnover. We propose that ER-associated degradation (ERAD) deploys autoadaptive regulatory pathways, collectively defined as ERAD tuning, to rapidly adapt degradation activity to misfolded protein load and to preempt the unfolded protein response (UPR) activation.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Proteínas Adaptadoras del Transporte Vesicular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteolisis , Interferencia de ARN , Transducción de Señal , Factor 2 Asociado a Receptor de TNF , Transcripción Genética , Transfección , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Mol Cell ; 46(6): 809-19, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22633958

RESUMEN

Several regulators of endoplasmic reticulum (ER)-associated degradation (ERAD) have a shorter half-life compared to conventional ER chaperones. At steady state, they are selectively removed from the ER by poorly defined events collectively referred to as ERAD tuning. Here we identify the complex comprising the type-I transmembrane protein SEL1L and the cytosolic protein LC3-I as an ERAD tuning receptor regulating the COPII-independent, vesicle-mediated removal of the lumenal ERAD regulators EDEM1 and OS-9 from the ER. Expression of folding-defective polypeptides enhances the lumenal content of EDEM1 and OS-9 by inhibiting their SEL1L:LC3-I-mediated segregation. This raises ERAD activity in the absence of UPR-induction. The mouse hepatitis virus (MHV) subverts ERAD tuning for replication. Consistently, SEL1L or LC3 silencing impair the MHV life cycle. Collectively, our data provide new molecular information about the ERAD tuning mechanisms that regulate ERAD in mammalian cells at the post translational level and how these mechanisms are hijacked by a pathogen.


Asunto(s)
Retículo Endoplásmico/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Células HeLa , Humanos , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
10.
PLoS One ; 6(4): e18268, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21533130

RESUMEN

BACKGROUND: Monoclonal antibodies and antibody fragments are powerful biotherapeutics for various debilitating diseases. However, high production costs, functional limitations such as inadequate pharmacokinetics and tissue accessibility are the current principal disadvantages for broadening their use in clinic. METHODOLOGY AND PRINCIPAL FINDINGS: We report a novel method for the long-term delivery of antibody fragments. We designed an allogenous immunoisolated implant consisting of polymer encapsulated myoblasts engineered to chronically release scFv antibodies targeted against the N-terminus of the Aß peptide. Following a 6-month intracerebral therapy we observed a significant reduction of the production and aggregation of the Aß peptide in the APP23 transgenic mouse model of Alzheimer's disease. In addition, functional assessment showed prevention of behavioral deficits related to anxiety and memory traits. CONCLUSIONS AND SIGNIFICANCE: The chronic local release of antibodies using immunoisolated polymer cell implants represents an alternative passive vaccination strategy in Alzheimer's disease. This novel technique could potentially benefit other diseases presently treated by local and systemic antibody administration.


Asunto(s)
Inmunización Pasiva , Fragmentos de Inmunoglobulinas/administración & dosificación , Animales , Línea Celular , Ratones
11.
PLoS One ; 6(1): e16304, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21298103

RESUMEN

Malectin is a conserved, endoplasmic reticulum (ER)-resident lectin that recognizes high mannose oligosaccharides displaying terminal glucose residues. Here we show that Malectin is an ER stress-induced protein that selectively associates with glycopolypeptides without affecting their entry and their retention in the Calnexin chaperone system. Analysis of the obligate Calnexin client influenza virus hemagglutinin (HA) revealed that Calnexin and Malectin associated with different timing to different HA conformers and that Malectin associated with misfolded HA. Analysis of the facultative Calnexin clients NHK and α1-antitrypsin (α1AT) revealed that induction of Malectin expression to simulate conditions of ER stress resulted in persistent association between the ER lectin and the model cargo glycoproteins, interfered with processing of cargo-linked oligosaccharides and reduced cargo secretion. We propose that Malectin intervention is activated upon ER stress to inhibit secretion of defective gene products that might be generated under conditions of aberrant functioning of the ER quality control machinery.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Calnexina , Línea Celular , Cricetinae , Cricetulus , Glicoproteínas/metabolismo , Humanos , Lectinas/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Deficiencias en la Proteostasis/prevención & control
12.
PLoS One ; 5(9)2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20927389

RESUMEN

Peptidyl-prolyl cis/trans isomerases (PPIs) catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER)-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA) selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB) as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-L(S) substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells.


Asunto(s)
Ciclofilinas/metabolismo , Ciclosporina/farmacología , Retículo Endoplásmico/enzimología , Ciclofilinas/química , Regulación hacia Abajo , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Pliegue de Proteína
13.
J Cell Biol ; 188(2): 223-35, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-20100910

RESUMEN

Sophisticated quality control mechanisms prolong retention of protein-folding intermediates in the endoplasmic reticulum (ER) until maturation while sorting out terminally misfolded polypeptides for ER-associated degradation (ERAD). The presence of structural lesions in the luminal, transmembrane, or cytosolic domains determines the classification of misfolded polypeptides as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. In this study, we show that disposal of soluble (nontransmembrane) polypeptides with luminal lesions (ERAD-L(S) substrates) is strictly dependent on the E3 ubiquitin ligase HRD1, the associated cargo receptor SEL1L, and two interchangeable ERAD lectins, OS-9 and XTP3-B. These ERAD factors become dispensable for degradation of the same polypeptides when membrane tethered (ERAD-L(M) substrates). Our data reveal that, in contrast to budding yeast, tethering of mammalian ERAD-L substrates to the membrane changes selection of the degradation pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Complejo CD3/genética , Complejo CD3/metabolismo , Células Cultivadas , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Lectinas/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Péptidos/química , Pliegue de Proteína , Proteínas/genética , Receptores del Factor Autocrino de Motilidad , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/genética
14.
Biochem Biophys Res Commun ; 371(3): 405-10, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18452703

RESUMEN

EDEM1 is a crucial regulator of endoplasmic reticulum (ER)-associated degradation (ERAD) that extracts non-native glycopolypeptides from the calnexin chaperone system. Under normal growth conditions, the intralumenal level of EDEM1 must be low to prevent premature interruption of ongoing folding programs. We report that in unstressed cells, EDEM1 is segregated from the bulk ER into LC3-I-coated vesicles and is rapidly degraded. The rapid turnover of EDEM1 is regulated by a novel mechanism that shows similarities but is clearly distinct from macroautophagy. Cells with defective EDEM1 turnover contain unphysiologically high levels of EDEM1, show enhanced ERAD activity and are characterized by impaired capacity to efficiently complete maturation of model glycopolypeptides. We define as ERAD tuning the mechanisms operating in the mammalian ER at steady state to offer kinetic advantage to folding over disposal of unstructured nascent chains by selective and rapid degradation of ERAD regulators.


Asunto(s)
Autofagia , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Animales , Proteína 5 Relacionada con la Autofagia , Línea Celular , Retículo Endoplásmico/química , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Eliminación de Secuencia
15.
Mol Cell ; 27(2): 238-249, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17643373

RESUMEN

Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.


Asunto(s)
Calnexina/metabolismo , Glucuronosiltransferasa/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo , Células Cultivadas , Cartilla de ADN/genética , Retículo Endoplásmico/metabolismo , Glucuronosiltransferasa/deficiencia , Glucuronosiltransferasa/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Técnicas In Vitro , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ratones , Unión Proteica , Pliegue de Proteína , Especificidad por Sustrato , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
16.
Mol Cell ; 20(4): 503-12, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16307915

RESUMEN

The UDP-glucose:glycoprotein glucosyltransferase (UGT) is a central player of glycoprotein quality control in the endoplasmic reticulum (ER). UGT reglucosylation of nonnative glycopolypeptides prevents their release from the calnexin cycle and secretion. Here, we compared the fate of a glycoprotein with a reversible, temperature-dependent folding defect in cells with and without UGT1. Upon persistent misfolding, tsO45 G was slowly released from calnexin and entered a second level of retention-based ER quality control by forming BiP/GRP78-associated disulfide-bonded aggregates. This correlated with loss in the ability to correct misfolding. Deletion of UGT1 did not affect the stringency of ER quality control. Rather, it accelerated release from calnexin and transfer to the second ER quality control level, but it did so after an unexpectedly long lag, showing that cycling in the calnexin chaperone system is not frenetic, as claimed by existing models, and is fully activated only upon persistent glycoprotein misfolding.


Asunto(s)
Calnexina/metabolismo , Glucosiltransferasas/fisiología , Glicoproteínas/química , Glicoproteínas/metabolismo , Pliegue de Proteína , alfa-Glucosidasas/fisiología , Animales , Línea Celular , Cistina/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Eliminación de Gen , Glucosiltransferasas/genética , Glicoproteínas/fisiología , Glicosilación , Calor , Ratones , Desnaturalización Proteica , Células Madre/enzimología , Células Madre/metabolismo , alfa-Glucosidasas/genética
17.
J Biol Chem ; 280(31): 28265-71, 2005 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15951445

RESUMEN

Calnexin and calreticulin are homologous lectin chaperones that assist maturation of cellular and viral glycoproteins in the mammalian endoplasmic reticulum. Calnexin and calreticulin share the same specificity for monoglucosylated protein-bound N-glycans but associate with a distinct set of newly synthesized polypeptides. We report here that most calnexin substrates do not associate with calreticulin even upon selective calnexin inactivation, while BiP associates more abundantly with nascent polypeptides under these conditions. Calreticulin associated more abundantly with orphan calnexin substrates only in infected cells and preferentially with polypeptides of viral origin, showing stronger dependence of model viral glycoproteins on endoplasmic reticulum lectins. This may explain why inactivation of the calnexin cycle affects viral replication and infectivity but not viability of mammalian cells.


Asunto(s)
Calnexina/metabolismo , Calreticulina/metabolismo , Glicoproteínas/metabolismo , Virus de los Bosques Semliki/metabolismo , Proteínas Virales/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Calnexina/genética , Línea Celular , Supervivencia Celular , Endopeptidasas , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Ratones , Polisacáridos/metabolismo , Virus de los Bosques Semliki/fisiología , Especificidad por Sustrato , Virus de la Estomatitis Vesicular Indiana/metabolismo , Virus de la Estomatitis Vesicular Indiana/fisiología , Ensayo de Placa Viral , Replicación Viral
18.
J Cell Biol ; 168(6): 863-8, 2005 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-15767460

RESUMEN

Endoproteolysis of the beta-amyloid precursor protein (APP) by beta- and gamma-secretases generates the toxic amyloid beta-peptide (Abeta), which accumulates in the brain of Alzheimer's disease (AD) patients. Here, we established a novel approach to regulate production of Abeta based on intracellular expression of single chain antibodies (intrabodies) raised to an epitope adjacent to the beta-secretase cleavage site of human APP. The intrabodies rapidly associated, within the endoplasmic reticulum (ER), with newly synthesized APP. One intrabody remained associated during APP transport along the secretory line, shielded the beta-secretase cleavage site and facilitated the alternative, innocuous cleavage operated by alpha-secretase. Another killer intrabody with an ER retention sequence triggered APP disposal from the ER. The first intrabody drastically inhibited and the second almost abolished generation of Abeta. Intrabodies association with specific substrates rather than with enzymes, may modulate intracellular processes linked to disease with highest specificity and may become instrumental to investigate molecular mechanisms of cellular events.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Anticuerpos/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/biosíntesis , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Anticuerpos/química , Anticuerpos Monoclonales/metabolismo , Unión Competitiva , Western Blotting , Extractos Celulares , Línea Celular , Medios de Cultivo Condicionados/análisis , Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Cinética , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Pruebas de Precipitina , Especificidad por Sustrato , Transfección
19.
J Biol Chem ; 280(4): 2424-8, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15579471

RESUMEN

Proteins expressed in the endoplasmic reticulum (ER) are subjected to a tight quality control. Persistent association with ER-resident molecular chaperones prevents exit of misfolded or incompletely assembled polypeptides from the ER and forward transport along the secretory line. ER-associated degradation (ERAD) is in place to avoid ER constipation. Folding-incompetent products have to be identified to interrupt futile folding attempts and then targeted for unfolding and dislocation into the cytosol for proteasome-mediated destruction. These processes are better understood for N-glycosylated proteins that represent the majority of polypeptides expressed in the ER. EDEM, a mannosidase-like chaperone, regulates the extraction of misfolded glycoproteins from the calnexin cycle. Here we identify and characterize EDEM2, a novel, stress-regulated mannosidase-like protein that operates in the ER lumen. We show that transcriptional up-regulation of EDEM2 depends on the ER stress-activated transcription factor Xbp1, that EDEM2 up-regulation selectively accelerates ERAD of terminally misfolded glycoproteins by facilitating their extraction from the calnexin cycle, and that the previously characterized homolog EDEM is also a soluble protein of the ER lumen in HEK293 cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , alfa-Manosidasa/química , alfa-Manosidasa/genética , Línea Celular , Proteínas de Unión al ADN/metabolismo , Bases de Datos como Asunto , Glicosilación , Humanos , Manosidasas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Nucleares/metabolismo , Péptidos/química , Unión Proteica , Pliegue de Proteína , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Factores de Transcripción , Transcripción Genética , Transfección , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box
20.
J Biol Chem ; 279(43): 44600-5, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15308654

RESUMEN

A stringent quality control process selects misfolded polypeptides generated in the endoplasmic reticulum (ER) for ER-associated degradation (ERAD). Here we assessed the maintenance of efficient glycoprotein folding in cells with defective ERAD caused by lack of adaptation of the intralumenal level of ER degradation-enhancing alpha-mannosidase-like protein (EDEM) to an increase in the ER cargo load. When these cells were converted into factories for production of high levels of human beta-secretase, maturation of this N-glycosylated aspartic protease progressed as in wild-type cells initially to gradually become less efficient. Up-regulation of EDEM to strengthen the ERAD machinery (but not up-regulation of calnexin to reinforce the folding machinery) was instrumental in maintaining folding efficiency and secretory capacity. Our data underscore the important role that the degradation machinery plays in maintaining a functional folding environment in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/fisiología , Animales , Calnexina/biosíntesis , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Detergentes/farmacología , Fibroblastos/metabolismo , Glicoproteínas/química , Glicosilación , Aparato de Golgi/metabolismo , Inmunoprecipitación , Cinética , Proteínas de la Membrana/química , Ratones , Proteínas Nucleares/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Factores de Transcripción del Factor Regulador X , Factores de Tiempo , Factores de Transcripción , Transfección , Transgenes , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...