Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607080

RESUMEN

Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.


Asunto(s)
Glioma , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Barrera Hematoencefálica/metabolismo , Membrana Celular
2.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290185

RESUMEN

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Asunto(s)
Daño por Reperfusión Miocárdica , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas , Lipopolisacáridos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Teóricos
3.
Pharmaceutics ; 14(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36365189

RESUMEN

Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.

4.
Molecules ; 26(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34577005

RESUMEN

Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the ß-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hidroxibutiratos/química , Pentanonas/química , Compuestos de Vanadio/química , Compuestos de Vanadio/farmacología , Transporte Biológico , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colorantes Fluorescentes , Humanos , Concentración 50 Inhibidora , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/ultraestructura , Inhibidores de Proteínas Quinasas/farmacología
5.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209843

RESUMEN

In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1ß release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1ß release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein-ligand binding that might explain the activity of the compounds.


Asunto(s)
Imidazoles , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Piroptosis/efectos de los fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacología , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células THP-1
6.
ACS Med Chem Lett ; 10(4): 437-443, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30996776

RESUMEN

Aldo-keto reductase 1C3 (AKR1C3) is an attractive target in drug design for its role in resistance to anticancer therapy. Several nonsteroidal anti-inflammatory drugs such as indomethacin are known to inhibit AKR1C3 in a nonselective manner because of COX-off target effects. Here we designed two indomethacin analogues by proposing a bioisosteric connection between the indomethacin carboxylic acid function and either hydroxyfurazan or hydroxy triazole rings. Both compounds were found to target AKR1C3 in a selective manner. In particular, hydroxyfurazan derivative is highly selective for AKR1C3 over the 1C2 isoform (up to 90-times more) and inactive on COX enzymes. High-resolution crystal structure of its complex with AKR1C3 shed light onto the binding mode of the new inhibitors. In cell-based assays (on colorectal and prostate cancer cells), the two indomethacin analogues showed higher potency than indomethacin. Therefore, these two AKR1C3 inhibitors can be used to provide further insight into the role of AKR1C3 in cancer.

7.
Proteomics ; 19(4): e1800301, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30633445

RESUMEN

This work proposes a novel approach by which to consistently classify cysteine sites in proteins in terms of their reactivity toward dimethyl fumarate (DMF) and fumarate. Dimethyl fumarate-based drug products have been approved for use as oral treatments for psoriasis and relapsing-remitting multiple sclerosis. The adduction of DMF and its (re)active metabolites to certain cysteine residues in proteins is thought to underlie their effects. However, only a few receptors for these compounds have been discovered to date. Our approach takes advantage of the growing number of known DMF- and fumarate-sensitive proteins and sites to perform analyses by combining the concepts of network theory, for protein structure analyses, and machine-learning procedures. Wide-ranging and previously unforeseen variety is found in the analysis of the neighborhood composition (the first neighbors) of cysteine sites found in DMF- and fumarate-sensitive proteins. Furthermore, neighborhood composition has shown itself to be a network-type attribute that is endowed with remarkable predictive power when distinct classification algorithms are employed. In conclusion, when adopted in combination with other target identification/validation approaches, methods that are based on the analysis of cysteine site neighbors in proteins should provide useful information by which to decipher the mode of action of DMF-based drugs.


Asunto(s)
Cisteína/química , Dimetilfumarato/química , Proteínas/química , Humanos
8.
Molecules ; 23(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453590

RESUMEN

High Brassicaceae consumption reduces the risk of developing several cancer types, probably due to high levels of glucosinolates. Extracts from Sinapis nigra L. (S. nigra) and Sinapis alba L. (S. alba) have been obtained from leaves and seeds under different conditions using ethanol/water mixtures because their glucosinolates are well accepted by the food industry. The EtOH/H2O 8:2 mixture gives better yields in glucosinolate amounts from ground seeds, mainly, sinalbin in S. alba and sinigrin in S. nigra. The highest antiproliferative activity in both non-tumor and tumor cell lines was induced by S. alba seeds extract. To evaluate whether the effect of Sinapis species (spp) was only due to glucosinolate content or whether it was influenced by the extracts' complexity, cells were treated with extracts or glucosinolates, in the presence of myrosinase. Pure sinigrin did not modify cell proliferation, while pure sinalbin was less effective than the extract. The addition of myrosinase increased the antiproliferative effects of the S. nigra extract and sinigrin. Antiproliferative activity was correlated to Mitogen-Activated Protein Kinases modulation, which was cell and extract-dependent. Cell-cycle analysis evidenced a proapoptotic effect of S. alba on both tumor cell lines and of S. nigra only on HCT 116. Both extracts showed good antimicrobial activity in disc diffusion tests and on ready-to-eat fresh salad. These results underline the potential effects of Sinapis spp in chemoprevention and food preservation.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Apoptosis , Bacterias/efectos de los fármacos , Proliferación Celular , Neoplasias Colorrectales/patología , Extractos Vegetales/farmacología , Sinapis/química , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Semillas/química , Sinapis/clasificación , Células Tumorales Cultivadas
9.
J Inorg Biochem ; 170: 55-62, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28222390

RESUMEN

A number of oxidovanadium(IV) complexes have been reported to display anticancer activity. A theranostic approach, based on the simultaneous observation of both the effect of oxidovanadium(IV) complexes on cell viability and the disclosure of their intracellular fate, is possible by using oxidovanadium(IV) complexes functionalized with fluorescent ligands. In the present study we accomplished the characterization of six oxidovanadium(IV) complexes in conditions close to those employed for in vitro administration. In particular, we investigated the light harvesting properties of such complexes in the presence of a dimethylsulphoxide/aqueous buffer mixture, and we found that one complex exhibits a quantum yield suitable for confocal microscopy investigations. EPR investigations in the same conditions provide information about the presence of ligands' substitution processes. Finally, the electrochemical properties of all complexes were determined by cyclic voltammetry. The overall results show that these complexes exhibit an average stability in solution; EPR data confirm that DMSO enter the first coordination sphere of oxidovanadium(IV) and suggest the occurrence of partial ligand substitution in the dimethylsulphoxide/aqueous buffer mixture.


Asunto(s)
Antineoplásicos/química , Vanadatos/química , Espectroscopía de Resonancia por Spin del Electrón
10.
Cancer Res ; 76(15): 4504-15, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27312529

RESUMEN

Although recent clinical trials of BRAF inhibitor combinations have demonstrated improved efficacy in BRAF-mutant colorectal cancer, emergence of acquired resistance limits clinical benefit. Here, we undertook a comprehensive effort to define mechanisms underlying drug resistance with the goal of guiding development of therapeutic strategies to overcome this limitation. We generated a broad panel of BRAF-mutant resistant cell line models across seven different clinically relevant drug combinations. Combinatorial drug treatments were able to abrogate ERK1/2 phosphorylation in parental-sensitive cells, but not in their resistant counterparts, indicating that resistant cells escaped drug treatments through one or more mechanisms leading to biochemical reactivation of the MAPK signaling pathway. Genotyping of resistant cells identified gene amplification of EGFR, KRAS, and mutant BRAF, as well as acquired mutations in KRAS, EGFR, and MAP2K1 These mechanisms were clinically relevant, as we identified emergence of a KRAS G12C mutation and increase of mutant BRAF V600E allele frequency in the circulating tumor DNA of a patient at relapse from combined treatment with BRAF and MEK inhibitors. To identify therapeutic combinations capable of overcoming drug resistance, we performed a systematic assessment of candidate therapies across the panel of resistant cell lines. Independent of the molecular alteration acquired upon drug pressure, most resistant cells retained sensitivity to vertical MAPK pathway suppression when combinations of ERK, BRAF, and EGFR inhibitors were applied. These therapeutic combinations represent promising strategies for future clinical trials in BRAF-mutant colorectal cancer. Cancer Res; 76(15); 4504-15. ©2016 AACR.


Asunto(s)
Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Dosificación de Gen/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Amplificación de Genes , Humanos , Transducción de Señal
11.
Pharmgenomics Pers Med ; 7: 31-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24516337

RESUMEN

Among the gynecological malignancies, ovarian cancer is the leading cause of mortality in developed countries. Treatment of ovarian cancer is based on surgery integrated with chemotherapy. Platinum-based drugs (cisplatin and carboplatin) comprise the core of first-line chemotherapy for patients with advanced ovarian cancer. Platinum-resistant ovarian cancer can be treated with cytotoxic chemotherapeutics such as paclitaxel, topotecan, PEGylated liposomal doxorubicin, or gemcitabine, but many patients eventually relapse on treatment. Targeted therapies based on agents specifically directed to overexpressed receptors, or to selected molecular targets, may be the future of clinical treatment. In this regard, overexpression of folate receptor-α on the surface of almost all epithelial ovarian cancers makes this receptor an excellent "tumor-associated antigen". With appropriate use of spacers/linkers, folate-targeted drugs can be distributed within the body, where they preferentially bind to ovarian cancer cells and are released inside their target cells. Here they can exert their desired cytotoxic function. Based on this strategy, 12 years after it was first described, a folate-targeted vinblastine derivative has now reached Phase III clinical trials in ovarian cancer. This review examines the importance of folate targeting, the state of the art of a vinblastine folate-targeted agent (vintafolide) for treating platinum-resistant ovarian cancer, and its diagnostic companion (etarfolatide) as a prognostic agent. Etarfolatide is a valuable noninvasive diagnostic imaging agent with which to select ovarian cancer patient populations that may benefit from this specific targeted therapy.

12.
Mol Cancer Ther ; 12(12): 2950-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24107445

RESUMEN

A critical step toward defining tailored therapy in patients with cancer is the identification of genetic interactions that may impair-or boost-the efficacy of selected therapeutic approaches. Cell models able to recapitulate combinations of genetic aberrations are important to find drug-genotype interactions poorly affected by the heterogeneous genetics of human tumors. In order to identify novel pharmacogenomic relationships, we employed an isogenic cell panel that reconstructs cancer genetic scenarios. We screened a library of 43 compounds in human hTERT-HME1 epithelial cells in which PTEN or RB1 were silenced in combination with the targeted knockin of cancer-associated mutations in EGFR, KRAS, BRAF, or PIK3CA oncogenes. Statistical analysis and clustering algorithms were applied to display similar drug response profiles and mutation-specific patterns of activity. From the screen, we discovered that proteasome inhibitors show selectivity toward BRAF V600E-mutant cells, irrespective of PTEN or RB1 expression. Preferential targeting of BRAF-mutant cells by proteasome inhibitors was corroborated in a second BRAF V600E isogenic model, as well as in a panel of colorectal cancer cell lines by the use of the proteasome inhibitor carfilzomib. Notably, carfilzomib also showed striking in vivo activity in a BRAF-mutant human colorectal cancer xenograft model. Vulnerability to proteasome inhibitors is dependent on persistent BRAF signaling, because BRAF V600E blockade by PLX4720 reversed sensitivity to carfilzomib in BRAF-mutant colorectal cancer cells. Our findings indicated that proteasome inhibition might represent a valuable targeting strategy in BRAF V600E-mutant colorectal tumors.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Mutación , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Ensayos de Selección de Medicamentos Antitumorales , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Genotipo , Humanos , Indoles/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Telomerasa/genética , Telomerasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Inorg Biochem ; 128: 26-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23911568

RESUMEN

Vanadium compounds are known to display a number of therapeutic effects, namely insulin-mimetic and cardiovascular effects. Evidence of the antiproliferative and proapoptotic activity of a number of vanadyl complexes, together with their low toxicity, establishes these metal compounds as promising antitumoral therapeutic agents. In the present work, we describe the synthesis and full characterization of six new vanadyl complexes with acetylacetonate derivatives bearing asymmetric substitutions on the ß-dicarbonyl moiety: the complexes were characterized in the solid state as well as in solution. Our results show that all complexes are in square pyramidal geometry; cis isomers in the equatorial plane are favored in the presence of strongly coordinating solvents. EPR evidence suggests that all complexes are in the bis-chelate form, although in two cases the mono-chelated complex seems to be present as well. Preliminary tests carried out on non-tumor and tumor cell lines show that these complexes are effective in suppressing cell viability and elicit a distinct response of tumor and non-tumor cells.


Asunto(s)
Complejos de Coordinación/química , Hidroxibutiratos/química , Pentanonas/química , Compuestos de Vanadio/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Células HCT116 , Células HT29 , Humanos , Estructura Molecular , Podocitos/citología , Podocitos/efectos de los fármacos , Soluciones/química , Solventes/química , Espectrofotometría Infrarroja , Espectrometría Raman , Compuestos de Vanadio/síntesis química , Compuestos de Vanadio/farmacología
14.
Nature ; 486(7404): 532-6, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22722830

RESUMEN

A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Alelos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Cetuximab , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Genes ras/genética , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Panitumumab , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)
15.
J Clin Invest ; 120(8): 2858-66, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20664172

RESUMEN

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Mutación , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Proteínas ras/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Everolimus , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas p21(ras) , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR
17.
Shock ; 31(3): 267-74, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18636044

RESUMEN

Hydrogen sulfide (H2S) is a novel gaseous mediator produced by cystathionine-beta-synthase and cystathionine-gamma-lyase in the cardiovascular system, including the heart. Using a rat model of regional myocardial ischemia/reperfusion, we investigated the effects of an H2S donor (sodium hydrogen sulfide [NaHS]) on the infarct size and apoptosis caused by ischemia (25 min) and reperfusion (2 h). Furthermore, we investigated the potential mechanism(s) of the cardioprotective effect(s) afforded by NaHS. Specifically, we demonstrate that NaHS (1) attenuates the increase in caspase 9 activity observed in cardiac myocytes isolated from the area at risk (AAR) of hearts subjected in vivo to regional myocardial I/R and (2) ameliorates the decrease in expression of Bcl-2 within the AAR obtained from rat hearts subjected to regional myocardial I/R. The cardioprotective effects of NaHS were abolished by 5-hydroxydeconoate, a putative mitochondrial adenosine triphosphate-sensitive potassium channel blocker. Furthermore, NaHS attenuated the increase in the I/R-induced (1) phosphorylation of p38 mitogen-activated protein kinase and Jun N-terminal kinase, (2) translocation from the cytosol to the nucleus of the p65 subunit of nuclear factor-kappaB, (3) intercellular adhesion molecule 1 expression, (4) polymorphonuclear leukocyte accumulation, (5) myeloperoxidase activity, (6) malondialdehyde levels, and (7) nitrotyrosine staining determined in the AAR obtained from rat hearts subjected to regional myocardial I/R. In conclusion, we demonstrate that the cardioprotective effect of NaHS is secondary to a combination of antiapoptotic and anti-inflammatory effects. The antiapoptotic effect of NaHS may be in part due to the opening of the putative mitochondrial adenosine triphosphate-sensitive potassium channels.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Proteínas Musculares/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Sulfuros/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antiarrítmicos/antagonistas & inhibidores , Antiarrítmicos/farmacología , Antiinflamatorios no Esteroideos/antagonistas & inhibidores , Cardiotónicos/antagonistas & inhibidores , Núcleo Celular/metabolismo , Núcleo Celular/patología , Ácidos Decanoicos/antagonistas & inhibidores , Ácidos Decanoicos/farmacología , Modelos Animales de Enfermedad , Antagonismo de Drogas , Hidroxiácidos/antagonistas & inhibidores , Hidroxiácidos/farmacología , Masculino , Malondialdehído/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Fosforilación , Ratas , Ratas Wistar , Sulfuros/antagonistas & inhibidores , Tirosina/análogos & derivados , Tirosina/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(52): 20864-9, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19106301

RESUMEN

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Asunto(s)
Alelos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Genes Supresores de Tumor , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Biológicos
19.
Lab Invest ; 88(10): 1038-48, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18679378

RESUMEN

The generation of endogenous hydrogen sulfide may either limit or contribute to the degree of tissue injury caused by ischemia/reperfusion. A total of 74 male Wistar rats were used to investigate the effects of endogenous and exogenous hydrogen sulfide in renal ischemia/reperfusion. Administration of the irreversible cystathionine gamma-lyase (CSE) inhibitor, dL-propargylglycine, prevented the recovery of renal function after 45 min ischemia and 72 h reperfusion. The hydrogen sulfide donor sodium hydrosulfide attenuated the (renal, tubular, and glomerular) dysfunction and injury caused by 45 min ischemia and 6 h reperfusion. Western blot analysis of kidneys taken at 30 min reperfusion showed that sodium hydrosulfide significantly attenuated phosphorylation of mitogen-activated protein kinases (p-38, c-JUN N-terminal protein kinase 1/2, and extracellular signal-regulated kinase 1/2) and activation of nuclear factor-kappaB. At 6 h reperfusion, sodium hydrosulfide significantly attenuated the histological score for acute tubular necrosis, the activation of caspase-3 and Bid, the decline in the expression of anti-apoptotic Bcl-2, and the expression of nuclear factor-kappaB-dependent proteins (inducible nitric oxide synthase, cyclo-oxygenase-2, and intercellular adhesion molecule-1). These findings suggest that (1) the synthesis of endogenous hydrogen sulfide by CSE is essential to protect the kidney against ischemia/reperfusion injury and dysfunction and aids in the recovery of renal function following ischemia/reperfusion, (2) hydrogen sulfide generated by sodium hydrosulfide reduces ischemia/reperfusion injury and dysfunction, and morphological changes of the kidney, and (3) the observed protective effects of hydrogen sulfide are due to both anti-apoptotic and anti-inflammatory effects.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Riñón/fisiopatología , Daño por Reperfusión/fisiopatología , Animales , Antiinflamatorios/metabolismo , Apoptosis/fisiología , Modelos Animales de Enfermedad , Riñón/patología , Masculino , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Daño por Reperfusión/patología
20.
Shock ; 30(3): 299-307, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18323734

RESUMEN

The serine/threonine glycogen synthase kinase 3beta (GSK-3beta) is abundant in the central nervous system, particularly in the hippocampus, and plays a pivotal role in the pathophysiology of a number of diseases, including neurodegeneration. This study was designed to investigate the effects of GSK-3beta inhibition against I/R injury in the rat hippocampus. Transient cerebral ischemia (30 min) followed by 1 h of reperfusion significantly increased generation of reactive oxygen species and modulated superoxide dismutase activity; 24 h of reperfusion evoked apoptosis (determined as mitochondrial cytochrome c release and Bcl-2 and caspase-9 expression), resulted in high plasma levels of TNF-alpha and increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and intercellular adhesion molecule-1. The selective GSK-3beta inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), was administered before and after ischemia or during reperfusion alone to assess its potential as prophylactic or therapeutic strategy. Prophylactic or therapeutic administration of TDZD-8 caused the phosphorylation (Ser(9)) and hence inactivation of GSK-3beta. Infarct volume and levels of S100B protein, a marker of cerebral injury, were reduced by TDZD-8. This was associated with a significant reduction in markers of oxidative stress, apoptosis, and the inflammatory response resulting from cerebral I/R. These beneficial effects were associated with a reduction of I/R-induced activation of the mitogen-activated protein kinases JNK1/2 and p38 and nuclear factor-kappaB. The present study demonstrates that TDZD-8 protects the brain against I/R injury by inhibiting GSK-3beta activity. Collectively, our data may contribute to focus the role of GSK-3beta in cerebral I/R.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Daño por Reperfusión/patología , Tiadiazoles/farmacología , Animales , Antioxidantes/metabolismo , Encéfalo/patología , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Masculino , Mitocondrias/metabolismo , Modelos Biológicos , Factores de Crecimiento Nervioso/biosíntesis , Fosforilación , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...