Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(34): 7658-7664, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37603791

RESUMEN

Paramagnetic molecules offer unique advantages for quantum information science owing to their spatial compactness, synthetic tunability, room-temperature quantum coherence, and potential for optical state initialization and readout. However, current optically addressable molecular qubits are hampered by rapid spin-lattice relaxation (T1) even at sub-liquid nitrogen temperatures. Here, we use temperature- and orientation-dependent pulsed electron paramagnetic resonance (EPR) to elucidate the negative sign of the ground state zero-field splitting (ZFS) and assign T1 anisotropy to specific types of motion in an optically addressable S = 1 Cr(o-tolyl)4 molecular qubit. The anisotropy displays a distinct sin2(2θ) functional form that is not observed in S = 1/2 Cu(acac)2 or other Cu(II)/V(IV) microwave addressable molecular qubits. The Cr(o-tolyl)4 T1 anisotropy is ascribed to couplings between electron spins and rotational motion in low-energy acoustic or pseudoacoustic phonons. Our findings suggest that rotational degrees of freedom should be suppressed to maximize the coherence temperature of optically addressable qubits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA