Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167212, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38750771

RESUMEN

Parkinson's Disease (PD) is characterised by the loss of dopaminergic neurons and the deposition of protein inclusions called Lewy Bodies (LBs). LBs are heterogeneous structures composed of protein and lipid molecules and their main constituent is the presynaptic protein α-synuclein. SH-SY5Y cells are neuroblastoma cells commonly used to model PD because they express dopaminergic markers and α-synuclein and they can be differentiated into neuronal cells using established protocols. Despite increasing evidence pointing towards a role of lipids in PD, limited knowledge is available on the lipidome of undifferentiated and differentiated SH-SY5Y cells. Using a combination of lipidomics, proteomics, morphological and electrophysiological measurements, we identified specific lipids, including sphingolipids, whose levels are affected by the differentiation of SH-SY5Y neuroblastoma cells and found that the levels of these lipids correlate with those of neuronal and dopaminergic markers. These results provide a quantitative characterisation of the changes in lipidome associated with the differentiation of SH-SY5Y cells into more neuronal and dopaminergic-like phenotype and serve as a basis for further characterisation of lipid disruptions in association with PD and its risk factors in this dopaminergic-like neuronal cell model.

2.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526443

RESUMEN

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Asunto(s)
Péptidos beta-Amiloides , alfa-Sinucleína , alfa-Sinucleína/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Amiloide/química , Lípidos
3.
Biochemistry ; 61(17): 1743-1756, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35944093

RESUMEN

Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower ß-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.


Asunto(s)
Amiloide , alfa-Sinucleína , Acetilación , Amiloide/química , Lípidos , Agregado de Proteínas , Procesamiento Proteico-Postraduccional , alfa-Sinucleína/química
4.
Brain ; 145(3): 1038-1051, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35362022

RESUMEN

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson's disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson's disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson's disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson's disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Fibroblastos/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Mutación/genética , Enfermedad de Parkinson/metabolismo , Esfingolípidos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Nat Commun ; 12(1): 7289, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911929

RESUMEN

Liquid-liquid phase separation or LLPS of proteins is a field of mounting importance and the value of quantitative kinetic and thermodynamic characterization of LLPS is increasingly recognized. We present a method, Capflex, which allows rapid and accurate quantification of key parameters for LLPS: Dilute phase concentration, relative droplet size distributions, and the kinetics of droplet formation and maturation into amyloid fibrils. The binding affinity between the polypeptide undergoing LLPS and LLPS-modulating compounds can also be determined. We apply Capflex to characterize the LLPS of Human DEAD-box helicase-4 and the coacervate system ssDNA/RP3. Furthermore, we study LLPS and the aberrant liquid-to-solid phase transition of α-synuclein. We quantitatively measure the decrease in dilute phase concentration as the LLPS of α-synuclein is followed by the formation of Thioflavin-T positive amyloid aggregates. The high information content, throughput and the versatility of Capflex makes it a valuable tool for characterizing biomolecular LLPS.


Asunto(s)
ARN Helicasas DEAD-box/química , Péptidos/química , alfa-Sinucleína/química , Amiloide/química , Benzotiazoles/química , Cinética , Transición de Fase , Termodinámica
7.
Biophys Chem ; 273: 106534, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33832803

RESUMEN

Mutations in the gene GBA, encoding glucocerebrosidase (GCase), are the highest genetic risk factor for Parkinson's disease (PD). GCase is a lysosomal glycoprotein responsible for the hydrolysis of glucosylceramide into glucose and ceramide. Mutations in GBA cause a decrease in GCase activity, stability and protein levels which in turn lead to the accumulation of GCase lipid substrates as well as α-synuclein (αS) in vitro and in vivo. αS is the main constituent of Lewy bodies found in the brain of PD patients and an increase in its levels was found to be associated with a decrease in GCase activity/protein levels in vitro and in vivo. In this review, we describe the reported biophysical and biochemical changes that GBA mutations can induce in GCase activity and stability as well as the current overview of the levels of GCase protein/activity, αS and lipids measured in patient-derived samples including post-mortem brains, stem cell-derived neurons, cerebrospinal fluid, blood and fibroblasts as well as in SH-SY5Y cells. In particular, we report how the levels of αS and lipids are affected by/correlated to significant changes in GCase activity/protein levels and which cellular pathways are activated or disrupted by these changes in each model. Finally, we review the current strategies used to revert the changes in the levels of GCase activity/protein, αS and lipids in the context of PD.


Asunto(s)
Glucosilceramidasa/metabolismo , Lípidos/química , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Glucosilceramidasa/química , Humanos , Modelos Moleculares , alfa-Sinucleína/química
8.
J Phys Chem Lett ; 10(24): 7872-7877, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31790267

RESUMEN

The deposition of coassemblies made of the small presynaptic protein, α-synuclein, and lipids in the brains of patients is the hallmark of Parkinson's disease. In this study, we used natural abundance 13C and 31P magic-angle spinning nuclear magnetic resonance spectroscopy together with cryo-electron microscopy and differential scanning calorimetry to characterize the fibrils formed by α-synuclein in the presence of vesicles made of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine or 1,2-dilauroyl-sn-glycero-3-phospho-L-serine. Our results show that these lipids coassemble with α-synuclein molecules to give thin and curly amyloid fibrils. The coassembly leads to slower and more isotropic reorientation of lipid molecular segments and a decrease in both the temperature and enthalpy of the lipid chain-melting compared with those in the protein-free lipid lamellar phase. These findings provide new insights into the properties of lipids within protein-lipid assemblies that can be associated with Parkinson's disease.


Asunto(s)
Amiloide/química , Membrana Dobles de Lípidos/química , alfa-Sinucleína/química , Cinética , Estructura Molecular , Transición de Fase , Unión Proteica , Serina/química , Relación Estructura-Actividad , Termodinámica , Temperatura de Transición
9.
Elife ; 82019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31389332

RESUMEN

Removing or preventing the formation of [Formula: see text]-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end, we have engineered the [Formula: see text]-wrapin AS69 to bind monomeric [Formula: see text]-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of [Formula: see text]-synuclein and formation of visible [Formula: see text]-synuclein aggregates. In flies, AS69 reduced [Formula: see text]-synuclein aggregates and the locomotor deficit resulting from [Formula: see text]-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-[Formula: see text]-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.


Asunto(s)
Amiloide/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Células HEK293 , Humanos , Agregación Patológica de Proteínas , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes/genética
10.
Chem Sci ; 9(25): 5506-5516, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-30061982

RESUMEN

Parkinson's disease is one of the major neurodegenerative disorders affecting the ageing populations of the modern world. One of the hallmarks of this disease is the deposition of aggregates, mainly of the small pre-synaptic protein α-synuclein (AS), in the brains of patients. Several very significantly modified forms of AS have been found in these deposits including those resulting from truncations of the protein at its C-terminus. Here, we report how two physiologically relevant C-terminal truncations of AS, AS(1-119) and AS(1-103), where either half or virtually all of the C-terminal domain, respectively, has been truncated, affect the mechanism of AS aggregation and the properties of the fibrils formed. In particular, we have found that the deletion of these C-terminal residues induces a shift of the pH region where autocatalytic secondary processes dominate the kinetics of AS aggregation towards higher pH values, from AS wild-type (pH 3.6-5.6) to AS(1-119) (pH 4.2-7.0) and AS(1-103) (pH 5.6-8.0). In addition, we found that both truncated variants formed protofibrils in the presence of lipid vesicles, but only those formed by AS(1-103) had the capacity to convert readily into mature fibrils. These results suggest that electrostatics play an important role in secondary nucleation, a key factor in aggregate proliferation, and in the conversion of AS fibrils from protofibrils to mature fibrils. In particular, our results demonstrate that sequence truncations of AS can shift the pH range where autocatalytic proliferation of fibrils is possible into the neutral, physiological regime, thus providing an explanation of the increased propensity of the C-truncated variants to aggregate in vivo.

11.
ACS Chem Biol ; 13(8): 2308-2319, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29953201

RESUMEN

The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders.


Asunto(s)
Colestanos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , Espermina/análogos & derivados , alfa-Sinucleína/metabolismo , Animales , Caenorhabditis elegans/fisiología , Línea Celular , Colestanos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Espermina/farmacología , Espermina/uso terapéutico
12.
Chem Commun (Camb) ; 54(56): 7854-7857, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29951679

RESUMEN

Oligomeric and protofibrillar aggregates that are populated along the pathway of amyloid fibril formation appear generally to be more toxic than the mature fibrillar state. In particular, α-synuclein, the protein associated with Parkinson's disease, forms kinetically trapped protofibrils in the presence of lipid vesicles. Here, we show that lipid-induced α-synuclein protofibrils can convert rapidly to mature fibrils at higher temperatures. Furthermore, we find that ß-synuclein, generally considered less aggregation prone than α-synuclein, forms protofibrils at higher temperatures. These findings highlight the importance of energy barriers in controlling the de novo formation and conversion of amyloid fibrils.

13.
Nat Chem ; 10(6): 673-683, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29736006

RESUMEN

Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-ß peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aß42 (the 42-residue form of the amyloid-ß peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aß42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aß42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aß42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fragmentos de Péptidos/metabolismo , Catálisis , Humanos , Cinética , Unión Proteica
14.
Anal Chem ; 90(5): 3284-3290, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29313342

RESUMEN

Elucidation of the fundamental interactions of proteins with biological membranes under native conditions is crucial for understanding the molecular basis of their biological function and malfunction. Notably, the large surface to volume ratio of living cells provides a molecular landscape for significant interactions of cellular components with membranes, thereby potentially modulating their function. However, such interactions can be challenging to probe using conventional biophysical methods due to the heterogeneity of the species and processes involved. Here, we use direct measurements of micron scale molecular diffusivity to detect and quantify the interactions of α-synuclein, associated with the etiology of Parkinson's disease, with negatively charged lipid vesicles. We further demonstrate that this microfluidic approach enables the characterization of size distributions of different binary mixtures of vesicles, which are not readily accessible using conventional light scattering techniques. Finally, the size distributions of the two α-synuclein conformations, free α-synuclein and membrane-bound α-synuclein, were resolved under varying lipid:protein ratios, thus, allowing the determination of the dissociation constant and the binding stoichiometry associated with this protein-lipid system. The microfluidic diffusional sizing platform allows these measurements to be performed on a time scale of minutes using microlitre volumes, thus, establishing the basis for an approach for the study of molecular interactions of heterogeneous systems under native conditions.


Asunto(s)
Liposomas Unilamelares/metabolismo , alfa-Sinucleína/metabolismo , Difusión , Técnicas Analíticas Microfluídicas/métodos , Tamaño de la Partícula , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Unión Proteica , Liposomas Unilamelares/química , alfa-Sinucleína/química
15.
J Parkinsons Dis ; 7(3): 433-450, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28671142

RESUMEN

α-synuclein is a small protein abundantly expressed in the brain and mainly located in synaptic terminals. The conversion of α-synuclein into oligomers and fibrils is the hallmark of a range of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. α-synuclein is disordered in solution but can adopt an α-helical conformation upon binding to lipid membranes. This lipid-protein interaction plays an important role in its proposed biological function, i.e., synaptic plasticity, but can also entail the aggregation of the protein. Both the chemical properties of the lipids and the lipid-to-protein-ratio have been reported to modulate the aggregation propensity of α-synuclein. In this review, the influence of changes in the nature and levels of lipids on the aggregation propensity of α-synuclein in vivo and in vitro will be discussed within a common general framework. In particular, while biophysical measurements and kinetic analyses of the time courses of α-synuclein aggregation in the presence of different types of lipid vesicles allow a mechanistic dissection of the influence of the lipids on α-synuclein aggregation, biological studies of cellular and animal models of Parkinson's disease allow the determination of changes in lipid levels and properties associated with the disease.


Asunto(s)
Lípidos de la Membrana/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Animales , Humanos , Lípidos de la Membrana/química , Enfermedad de Parkinson/etiología , alfa-Sinucleína/química
16.
Proc Natl Acad Sci U S A ; 114(6): E1009-E1017, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096355

RESUMEN

The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.


Asunto(s)
Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , alfa-Sinucleína/química , Algoritmos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Productos Biológicos/química , Productos Biológicos/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Colestanoles/química , Colestanoles/farmacología , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Paresia/genética , Paresia/metabolismo , Paresia/prevención & control , Enfermedad de Parkinson/metabolismo , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Sci Rep ; 6: 36010, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808107

RESUMEN

α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson's disease through the processes involved in the formation of amyloid fibrils. α and ß-synuclein are homologous proteins found at comparable levels in presynaptic terminals but ß-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and ß-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that ß-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that ß-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.


Asunto(s)
Unión Competitiva , Agregado de Proteínas , Agregación Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Lípidos/química , Fosfatidilserinas/química , Unión Proteica , Alineación de Secuencia , Propiedades de Superficie , Sinucleína beta/química
18.
Proc Natl Acad Sci U S A ; 113(37): 10328-33, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27573854

RESUMEN

Parkinson's disease is a highly debilitating neurodegenerative condition whose pathological hallmark is the presence in nerve cells of proteinacious deposits, known as Lewy bodies, composed primarily of amyloid fibrils of α-synuclein. Several missense mutations in the gene encoding α-synuclein have been associated with familial variants of Parkinson's disease and have been shown to affect the kinetics of the aggregation of the protein. Using a combination of experimental and theoretical approaches, we present a systematic in vitro study of the influence of disease-associated single-point mutations on the individual processes involved in α-synuclein aggregation into amyloid fibrils. We find that lipid-induced fibril production and surface catalyzed fibril amplification are the processes most strongly affected by these mutations and show that familial mutations can induce dramatic changes in the crucial processes thought to be associated with the initiation and spreading of the aggregation of α-synuclein.


Asunto(s)
Enfermedad de Parkinson/genética , Agregación Patológica de Proteínas/genética , alfa-Sinucleína/genética , Amiloide/química , Amiloide/genética , Humanos , Cinética , Lípidos/química , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/química
19.
Proc Natl Acad Sci U S A ; 113(26): 7065-70, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298346

RESUMEN

Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson's disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein's native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , Membrana Celular/química , Humanos , Cinética , Membrana Dobles de Lípidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
20.
Sci Rep ; 6: 23732, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27046077

RESUMEN

Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a "druggable" target with small molecules.


Asunto(s)
Bencenosulfonatos/química , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Triazoles/química , Antineoplásicos/química , Aurora Quinasa A/metabolismo , Calorimetría , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Termodinámica , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...