Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Genet ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358601

RESUMEN

Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution.

2.
Nat Rev Cancer ; 24(1): 51-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062252

RESUMEN

The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.


Asunto(s)
Neoplasias , Receptores de IgG , Humanos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Inmunoglobulina G/metabolismo , Inmunomodulación , Inmunoterapia , Neoplasias/terapia
3.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37399358

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown remarkable results against B-cell malignancies, but only a minority of patients have long-term remission. The metabolic requirements of both tumor cells and activated T cells result in production of lactate. The export of lactate is facilitated by expression of monocarboxylate transporter (MCTs). CAR T cells express high levels of MCT-1 and MCT-4 on activation, while certain tumors predominantly express MCT-1. METHODS: Here, we studied the combination of CD19-specific CAR T-cell therapy with pharmacological blockade of MCT-1 against B-cell lymphoma. RESULTS: MCT-1 inhibition with small molecules AZD3965 or AR-C155858 induced CAR T-cell metabolic rewiring but their effector function and phenotype remained unchanged, suggesting CAR T cells are insensitive to MCT-1 inhibition. Moreover, improved cytotoxicity in vitro and antitumoral control on mouse models was found with the combination of CAR T cells and MCT-1 blockade. CONCLUSION: This work highlights the potential of selective targeting of lactate metabolism via MCT-1 in combination with CAR T cells therapies against B-cell malignancies.


Asunto(s)
Linfoma de Células B , Receptores Quiméricos de Antígenos , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/terapia , Lactatos , Tratamiento Basado en Trasplante de Células y Tejidos
4.
Cell Rep ; 42(5): 112472, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37149862

RESUMEN

Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células-Madre Neurales , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Diferenciación Celular , Microambiente Tumoral , Células-Madre Neurales/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
5.
Semin Cancer Biol ; 92: 139-149, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37037400

RESUMEN

Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Encéfalo/metabolismo , Células Madre Neoplásicas/metabolismo , Diferenciación Celular , Microambiente Tumoral
6.
Cells ; 11(22)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428964

RESUMEN

Dopamine has emerged as an important regulator of immunity. Recent evidence has shown that signalling through low-affinity dopamine receptors exerts anti-inflammatory effects, whilst stimulation of high-affinity dopamine receptors potentiates immunity in different models. However, the dopaminergic regulation of CD8+ T-cells in anti-tumour immunity remains poorly explored. Here, we studied the role of dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in the function of CD8+ T-cells and its consequences in the anti-tumour immune response. We observed that the deficiency of Drd3 (the gene encoding DRD3) in CD8+ T-cells limits their in vivo expansion, leading to an impaired anti-tumour response in a mouse melanoma model. Mechanistic analyses suggest that DRD3 stimulation favours the production of interleukin 2 (IL-2) and the surface expression of CD25, the α-chain IL-2 receptor, which are required for expansion and effector differentiation of CD8+ T-cells. Thus, our results provide genetic and pharmacologic evidence indicating that DRD3 favours the production of IL-2 by CD8+ T-cells, which is associated with higher expansion and acquisition of effector function of these cells, promoting a more potent anti-tumour response in a melanoma mouse model. These findings contribute to understanding how dopaminergic signalling affects the cellular immune response and represent an opportunity to improve melanoma therapy.


Asunto(s)
Melanoma , Linfocitos T Citotóxicos , Animales , Ratones , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Dopamina , Interleucina-2/metabolismo , Receptores Dopaminérgicos , Linfocitos T Citotóxicos/metabolismo
8.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857425

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Asunto(s)
Neoplasias Encefálicas/inmunología , Epigénesis Genética , Glioblastoma/inmunología , Evasión Inmune/inmunología , Células Mieloides/inmunología , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Cancer ; 1(5): 546-561, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32803172

RESUMEN

Tumour mutational burden (TMB) predicts immunotherapy outcome in non-small cell lung cancer (NSCLC), consistent with immune recognition of tumour neoantigens. However, persistent antigen exposure is detrimental for T cell function. How TMB affects CD4 and CD8 T cell differentiation in untreated tumours, and whether this affects patient outcomes is unknown. Here we paired high-dimensional flow cytometry, exome, single-cell and bulk RNA sequencing from patients with resected, untreated NSCLC to examine these relationships. TMB was associated with compartment-wide T cell differentiation skewing, characterized by loss of TCF7-expressing progenitor-like CD4 T cells, and an increased abundance of dysfunctional CD8 and CD4 T cell subsets, with significant phenotypic and transcriptional similarity to neoantigen-reactive CD8 T cells. A gene signature of redistribution from progenitor-like to dysfunctional states associated with poor survival in lung and other cancer cohorts. Single-cell characterization of these populations informs potential strategies for therapeutic manipulation in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Diferenciación Celular/genética , Humanos , Neoplasias Pulmonares/genética , Mutación
10.
Nat Commun ; 10(1): 4401, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562311

RESUMEN

Tissue-resident memory CD8+ T (Trm) cells mediate potent local innate and adaptive immune responses and play a central role against solid tumors. However, whether Trm cells cross-talk with dendritic cells (DCs) to support anti-tumor immunity remains unclear. Here we show that antigen-specific activation of skin Trm cells leads to maturation and migration to draining lymph nodes of cross-presenting dermal DCs. Tumor rejection mediated by Trm cells triggers the spread of cytotoxic CD8+ T cell responses against tumor-derived neo- and self-antigens via dermal DCs. These responses suppress the growth of intradermal tumors and disseminated melanoma lacking the Trm cell-targeted epitope. Moreover, analysis of RNA sequencing data from human melanoma tumors reveals that enrichment of a Trm cell gene signature associates with DC activation and improved survival. This work unveils the ability of Trm cells to amplify the breath of cytotoxic CD8+ T cell responses through DCs, thereby strengthening anti-tumor immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Memoria Inmunológica/inmunología , Melanoma/inmunología , Piel/inmunología , Animales , Antígenos/inmunología , Movimiento Celular/inmunología , Reactividad Cruzada/inmunología , Humanos , Ganglios Linfáticos/inmunología , Melanoma/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/citología , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA