Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Biol Macromol ; 271(Pt 1): 132194, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821791

RESUMEN

Currently the textile industry relies strongly on synthetic fibres and cotton, which contribute to many environmental problems. Man-made cellulosic fibres (MMCF) can offer sustainable alternatives. Herein, the development of Lyocell-type MMCF using bacterial cellulose (BC) as alternative raw material in the Ioncell® spinning process was investigated. BC, known for its high degree of polymerization (DP), crystallinity and strength was successfully dissolved in the ionic liquid (IL) 1,5-diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] to produce solutions with excellent spinnability. BC staple fibres displayed good mechanical properties and crystallinity (CI) and were spun into a yarn which was knitted into garments, demonstrating the potential of BC as suitable cellulose source for textile production. BC is also a valuable additive when recycling waste cellulose textiles (viscose fibres). The high DP and Cl of BC enhanced the spinnability in a viscose/BC blend, consequently improving the mechanical performance of the resulting fibres, as compared to neat viscose fibres.


Asunto(s)
Celulosa , Textiles , Celulosa/química , Bacterias , Líquidos Iónicos/química , Industria Textil
2.
Biotechnol Biofuels Bioprod ; 17(1): 35, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424558

RESUMEN

BACKGROUND: Bacterial cellulose (BC) is a biocompatible material with unique mechanical properties, thus holding a significant industrial potential. Despite many acetic acid bacteria (AAB) being BC overproducers, cost-effective production remains a challenge. The role of pyrroloquinoline quinone (PQQ)-dependent membrane dehydrogenases (mDH) is crucial in the metabolism of AAB since it links substrate incomplete oxidation in the periplasm to energy generation. Specifically, glucose oxidation to gluconic acid substantially lowers environmental pH and hinders BC production. Conversely, ethanol supplementation is known to enhance BC yields in Komagataeibacter spp. by promoting efficient glucose utilization. RESULTS: K. sucrofermentans ATCC 700178 was engineered, knocking out the four PQQ-mDHs, to assess their impact on BC production. The strain KS003, lacking PQQ-dependent glucose dehydrogenase (PQQ-GDH), did not produce gluconic acid and exhibited a 5.77-fold increase in BC production with glucose as the sole carbon source, and a 2.26-fold increase under optimal ethanol supplementation conditions. In contrast, the strain KS004, deficient in the PQQ-dependent alcohol dehydrogenase (PQQ-ADH), showed no significant change in BC yield in the single carbon source experiment but showed a restrained benefit from ethanol supplementation. CONCLUSIONS: The results underscore the critical influence of PQQ-GDH and PQQ-ADH and clarify the effect of ethanol supplementation on BC production in K. sucrofermentans ATCC 700178. This study provides a foundation for further metabolic pathway optimization, emphasizing the importance of diauxic ethanol metabolism for high BC production.

3.
Int J Biol Macromol ; 253(Pt 7): 127310, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37813214

RESUMEN

The global shortage of cotton for textile production, forces the exploitation of forests´ lignocellulosic biomass to produce man-made cellulosic fibres (MMCF). This has a considerable environmental impact, pressing the textile industry to search for new sustainable materials and to the development of sustainable recycling processes. Bacterial cellulose (BC), an exopolysaccharide produced by fermentation, could represent such an alternative. In particular, we tested the possibility of improving the mechanical properties of cellulose filaments with a low degree of polymerization (DP) by combining them with high DP from BC, so far exploited to little extent in the textile field. In this work, BC with different degrees of polymerization (DPcuaxam) (BCneat: 927; BCdep:634 and BCblend: 814) were dissolved in N-methylmorpholine-N-oxide (NMMO) and their spinnability was studied. The rheological behaviour of the dopes was assessed and all were found to be spinnable, at suitable concentrations (BCneat:9.0 %; BCdep:12.2 %; BCblend:10.5 %). A continuous spinning was obtained and the resulting filaments offered similar mechanical performance to those of Lyocell. Further, the blending of BC pulps with different DPs (BCblend, obtained by combining BCneat and BCdep) allowed the production of fibres with higher stiffness (breaking tenacity 56.4 CN.tex-1) and lower elongation (8.29 %), as compared to samples with more homogeneous size distribution (neat BC and depolymerized BC).


Asunto(s)
Carbohidratos , Celulosa , Humanos , Textiles , Fenómenos Mecánicos , Polimerizacion
4.
Clin Oral Investig ; 27(3): 979-994, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36707442

RESUMEN

OBJECTIVES: This study aimed to improve the performance and mode of administration of a glass-reinforced hydroxyapatite synthetic bone substitute, Bonelike by Biosckin® (BL®), by association with a dextrin-based hydrogel, DEXGEL, to achieve an injectable and moldable device named DEXGEL Bone. METHODS: Twelve participants requiring pre-molar tooth extraction and implant placement were enrolled in this study. BL® granules (250-500 µm) were administered to 6 randomized participants whereas the other 6 received DEXGEL Bone. After 6 months, a bone biopsy of the grafted area was collected for histological and histomorphometric evaluation, prior to implant placement. The performance of DEXGEL Bone and BL® treatments on alveolar preservation were further analyzed by computed tomography and Hounsfield density analysis. Primary implant stability was analyzed by implant stability coefficient technique. RESULTS: The healing of defects was free of any local or systemic complications. Both treatments showed good osseointegration with no signs of adverse reaction. DEXGEL Bone exhibited increased granule resorption (p = 0.029) accompanied by a tendency for more new bone ingrowth (although not statistically significant) compared to the BL® group. The addition of DEXGEL to BL® granules did not compromise bone volume or density, being even beneficial for implant primary stability (p = 0.017). CONCLUSIONS: The hydrogel-reinforced biomaterial exhibited an easier handling, a better defect filling, and benefits in implant stability. CLINICAL RELEVANCE: This study validates DEXGEL Bone safety and performance as an injectable carrier of granular bone substitutes for alveolar ridge preservation. TRIAL REGISTRATION: European Databank on Medical Devices (EUDAMED) No. CIV-PT-18-01-02,705; Registo Nacional de Estudos Clínicos, RNEC, No. 30122.


Asunto(s)
Pérdida de Hueso Alveolar , Aumento de la Cresta Alveolar , Sustitutos de Huesos , Humanos , Dextrinas , Alveolo Dental/cirugía , Hidrogeles , Oseointegración , Extracción Dental/efectos adversos , Aumento de la Cresta Alveolar/métodos , Pérdida de Hueso Alveolar/etiología
5.
J Sci Food Agric ; 103(3): 1077-1087, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35218225

RESUMEN

BACKGROUND: Most of the current materials used in food packaging are synthetic and non-degradable, raising environmental issues derived from the accumulation of plastics in landfills/waterways. The food industry increasingly needs eco-friendly sustainable materials that meet food-packaging requirements. Bacterial nanocellulose (BNC), a biopolymer obtained by fermentation, offers very good mechanical properties and the ability to carry and deliver active substances. However, its water-vapor permeability is too high for food-packaging applications. In this work, a layered biodegradable composite based on BNC and polyhydroxyalkanoate (PHBV) was produced, attempting to improve its overall barrier properties. Polyhydroxyalkanoate is a biopolymer with high degree of hydrophobicity and biodegradability, and is also obtained by fermentation. Wet BNC membranes produced by static culture were plasticized by impregnation of solutions of either glycerol (BNCgly ) or polyethylene glycol (MW 600) (BNCPEG ). The plasticized BNC was then coated with PHBV solution dissolved in formic acid, and oven dried at 148 °C. RESULTS: Overall, PHBV coating on plasticized BNC reduced water vapor permeability significantly (from 0.990 to 0.032 g.µm.m-2 .day-1 .Pa-1 ) under 50% relative humidity. It increased the hydrophobicity (contact angle from 10-40° to 80-90°) but decreased the stiffness (from 3.1 GPa to 1.3 Gpa) of the composite. CONCLUSIONS: Overall, the mechanical and barrier properties of the layered composite obtained were considered suitable for food-packaging applications. The plasticizing (with glycerol or polyethylene glycol) of BNC significantly improved the mechanical performance and the PHBV coating reduced the water affinity (vapor and liquid state) on BNC. © 2022 Society of Chemical Industry.


Asunto(s)
Celulosa , Polihidroxialcanoatos , Celulosa/química , Embalaje de Alimentos , Glicerol , Biopolímeros , Bacterias
6.
J Biomed Mater Res A ; 110(11): 1786-1800, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36082973

RESUMEN

A local drug delivery system that attempts to find a suitable balance between antimicrobial and regenerative actions was developed for osteomyelitis treatment (OM). This system combines the angiogenic and immunomodulatory peptide LLKKK18 (LL18) and vancomycin hydrochloride (VH), loaded into an injectable oxidized dextrin (ODEX)-based hydrogel (HG). In vitro cytotoxicity was analyzed in MC3T3-E1 pre-osteoblasts and erythrocytes. The kinetics of LL18 release was studied. Antimicrobial activity was assessed in vitro against a clinical Methicillin-Resistant Staphylococcus aureus (MRSA) strain. A rat model of acute OM was developed by direct inoculation into a tibia defect, concomitantly with the implantation of the drug-loaded HG. The local bioburden was quantified and damage in surrounding tissues was examined histologically. In vitro, ODEX-based HG displayed a safe hemolytic profile. Half of LL18 (53%) is released during the swelling phase at physiological pH, then being gradually released until complete HG degradation. LL18-loaded HG at 300 µM was the most effective peptide formulation in decreasing in vivo infection among concentrations ranging from 86 to 429 µM. The histopathological scores observed in vivo varied with the LL18 concentration in a dose-dependent manner. VH at 28 mM completely eradicated bacteria, although with substantial tissue injury. We have found that sub-millimolar doses of VH combined with LL18 at 300 µM may suffice to eradicate the infection, with reduced tissue damage. We propose an easy-to-handle, shape-fitting HG formulation with the potential to treat MRSA-infected bone with low VH doses associated with LL18.


Asunto(s)
Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Vancomicina , Animales , Ratas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Catelicidinas , Portadores de Fármacos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/metabolismo , Osteomielitis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Vancomicina/farmacología , Vancomicina/uso terapéutico
7.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35957036

RESUMEN

The potential of nanomaterials in food technology is nowadays well-established. However, their commercial use requires a careful risk assessment, in particular concerning the fate of nanomaterials in the human body. Bacterial nanocellulose (BNC), a nanofibrillar polysaccharide, has been used as a food product for many years in Asia. However, given its nano-character, several toxicological studies must be performed, according to the European Food Safety Agency's guidance. Those should especially answer the question of whether nanoparticulate cellulose is absorbed in the gastrointestinal tract. This raises the need to develop a screening technique capable of detecting isolated nanosized particles in biological tissues. Herein, the potential of a cellulose-binding module fused to a green fluorescent protein (GFP-CBM) to detect single bacterial cellulose nanocrystals (BCNC) obtained by acid hydrolysis was assessed. Adsorption studies were performed to characterize the interaction of GFP-CBM with BNC and BCNC. Correlative electron light microscopy was used to demonstrate that isolated BCNC may be detected by fluorescence microscopy. The uptake of BCNC by macrophages was also assessed. Finally, an exploratory 21-day repeated-dose study was performed, wherein Wistar rats were fed daily with BNC. The presence of BNC or BCNC throughout the GIT was observed only in the intestinal lumen, suggesting that cellulose particles were not absorbed. While a more comprehensive toxicological study is necessary, these results strengthen the idea that BNC can be considered a safe food additive.

8.
Int J Pharm ; 620: 121752, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35439573

RESUMEN

An increase in bacterial resistance to systemic antibiotics has sparked interest into alternative antimicrobial compounds as well as methods for effective local, non-invasive drug delivery. Topical treatments, however, may be hindered by the presence of biological barriers, such as the tympanic membrane in the case of otitis media. Herein, the transtympanic permeation ability of liposomes loaded with the pneumococcal endolysin MSlys and of free MSlys was evaluated ex vivo. MSlys loaded in PEGylated liposomes showed an increased permeation across human tympanic membranes, as compared to its free form, being able to reduce the pneumococcal cell load after 2 h of permeation. However, antipneumococcal activity was no longer detected after 4 h of permeation and hydrolysis of the endolysin was observed after an extended incubation time (≥48 h). This work provides a first assessment of a successful, non-invasive delivery method for endolysins across an intact tympanic membrane. Findings have implications for non-systemic, local treatment of otitis media.


Asunto(s)
Liposomas , Otitis Media , Antibacterianos , Endopeptidasas , Humanos , Liposomas/uso terapéutico , Otitis Media/tratamiento farmacológico , Streptococcus pneumoniae
9.
Front Bioeng Biotechnol ; 9: 608826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869148

RESUMEN

There is an emerging environmental awareness and social concern regarding the environmental impact of the textile industry, highlighting the growing need for developing green and sustainable approaches throughout this industry's supply chain. Upstream, due to population growth and the rise in consumption of textile fibers, new sustainable raw materials and processes must be found. Cellulose presents unique structural features, being the most important and available renewable resource for textiles. The physical and chemical modification reactions yielding fibers are of high commercial importance today. Recently developed technologies allow the production of filaments with the strongest tensile performance without dissolution or any other harmful and complex chemical processes. Fibers without solvents are thus on the verge of commercialization. In this review, the technologies for the production of cellulose-based textiles, their surface modification and the recent trends on sustainable cellulose sources, such as bacterial nanocellulose, are discussed. The life cycle assessment of several cellulose fiber production methods is also discussed.

10.
Mater Sci Eng C Mater Biol Appl ; 122: 111861, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641887

RESUMEN

Constructing biomimetic structure and immobilizing antithrombus factors are two effective methods to ensure rapid endothelialization and long-term anticoagulation for small-diameter vascular grafts. However, few literatures are available regarding simultaneous implementation of these two strategies. Herein, a nano-micro-fibrous biomimetic graft with a heparin coating was prepared via a step-by-step in situ biosynthesis method to improve potential endothelialization and anticoagulation. The 4-mm-diameter tubular graft consists of electrospun cellulose acetate (CA) microfibers and entangled bacterial nanocellulose (BNC) nanofibers with heparin coating on dual fibers. The hybridized and heparinized graft possesses suitable pore structure that facilitates endothelia cells adhesion and proliferation but prevents infiltration of fibrous tissue and blood leakage. In addition, it shows higher mechanical properties than those of bare CA and hybridized CA/BNC grafts, which match well with native blood vessels. Moreover, this dually modified graft exhibits improved blood compatibility and endothelialization over the counterparts without hybridization or heparinization according to the testing results of platelet adhesion, cell morphology, and protein expression of von Willebrand Factor. This novel graft with dual modifications shows promising as a new small-diameter vascular graft. This study provides a guidance for promoting endothelialization and blood compatibility by dual modifications of biomimetic structure and immobilized bioactive molecules.


Asunto(s)
Nanofibras , Anticoagulantes/farmacología , Coagulación Sanguínea , Prótesis Vascular , Heparina/farmacología
11.
Regen Biomater ; 8(1): rbaa036, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33732486

RESUMEN

The development of injectable bone substitutes (IBS) have obtained great importance in the bone regeneration field, as a strategy to reach hardly accessible defects using minimally invasive techniques and able to fit to irregular topographies. In this scenario, the association of injectable hydrogels and bone graft granules is emerging as a well-established trend. Particularly, in situ forming hydrogels have arisen as a new IBS generation. An in situ forming and injectable dextrin-based hydrogel (HG) was developed, aiming to act as a carrier of granular bone substitutes and bioactive agents. In this work, the HG was associated to a granular bone substitute (Bonelike®) and implanted in goat critical-sized calvarial defects (14 mm) for 3, 6 and 12 weeks. The results showed that HG improved the handling properties of the Bonelike® granules and did not affect its osteoconductive features, neither impairing the bone regeneration process. Human multipotent mesenchymal stromal cells from the umbilical cord, extracellular matrix hydrolysates and the pro-angiogenic peptide LLKKK18 were also combined with the IBS. These bioactive agents did not enhance the new bone formation significantly under the conditions tested, according to micro-computed tomography and histological analysis.

12.
Microorganisms ; 10(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35056502

RESUMEN

Understanding the bacterial etiology of otitis media (OM) is important when designing and evaluating the best course of treatment. This study analyzed middle ear fluid (MEF) and nasopharynx (NP) samples collected from 49 children with OM undergoing myringotomy in the northwestern Portuguese district of Braga. A correlation between species in the NP and MEF was observed following pathogen detection by culture and quantitative polymerase chain reaction (qPCR) methods. Bacterial identification using culturing methods showed that Moraxella catarrhalis was the most representative in NP and MEF, followed by Streptococcus pneumoniae. However, qPCR of MEF showed a higher prevalence (61%) of Haemophilus influenzae. S. pneumoniae was not the most frequently identified species, but it still remains one of the leading causes of OM in this region despite 93.9% of the children being vaccinated with the pneumococcal conjugate vaccine. Furthermore, 46% of the samples analyzed by qPCR identified more than two bacterial species. M. catarrhalis and S. pneumoniae were the most frequent combination identified in NP and MEF samples by culturing methods. Additionally, a few NP and MEF samples simultaneously presented the three main otopathogens. These results point out that polymicrobial infections play an important role in OM. Further studies characterizing the serotypes of the strains isolated, their resistance profile, and their biofilm forming ability would help in the development of more targeted strategies against otitis media.

13.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171761

RESUMEN

The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hidrocarburos Fluorados/química , Ingeniería de Tejidos/métodos , Compuestos de Vinilo/química , Células 3T3 , Animales , Materiales Biocompatibles/química , Huesos/metabolismo , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Supervivencia Celular , Hidrocarburos Fluorados/farmacología , Ratones , Osteoblastos/metabolismo , Osteogénesis , Polivinilos/química , Andamios del Tejido/química , Titanio/química , Compuestos de Vinilo/farmacología
14.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081126

RESUMEN

The food industry is increasingly demanding advanced and eco-friendly sustainable packaging materials with improved physical, mechanical and barrier properties. The currently used materials are synthetic and non-degradable, therefore raising environmental concerns. Consequently, research efforts have been made in recent years towards the development of bio-based sustainable packaging materials. In this review, the potential of nanocelluloses as nanofillers or as coatings for the development of bio-based nanocomposites is discussed, namely: (i) the physico-chemical interaction of nanocellulose with the adjacent polymeric phase, (ii) the effect of nanocellulose modification/functionalization on the final properties of the composites, (iii) the production methods for such composites, and (iv) the effect of nanocellulose on the overall migration, toxicity, and the potential risk to human health. Lastly, the technology readiness level of nanocellulose and nanocellulose based composites for the market of food packaging is discussed.

15.
J Mater Chem B ; 8(26): 5694-5706, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510089

RESUMEN

Mimicking the morphological structure of native blood vessels is critical for the development of vascular grafts. Herein, small-diameter composite vascular grafts that integrate the nanofibrous bacterial cellulose (BC) and submicrofibrous cellulose acetate (CA) were fabricated via a combined electrospinning and step-by-step in situ biosynthesis. Scanning electron microscopy (SEM) observation shows the nano/submicro-fibrous morphology and well-interconnected porous structure of the BC/CA grafts. It is found that the BC/CA graft with a suitable BC content demonstrates lower potential of thrombus formation and enhanced endothelialization as compared to the BC and CA counterparts. Western blotting and RT-qPCR results suggest that the BC/CA-2 graft promotes endothelialization by improving expressions of genes vWF-1 and CD31 and protein CD31. The in vivo tests demonstrate much lower inflammatory response to the BC/CA graft. These results suggest that the BC/CA graft shows a great potential as an artificial graft for rapid formation of an endothelial cell monolayer.


Asunto(s)
Materiales Biomiméticos/química , Celulosa/análogos & derivados , Celulosa/química , Injerto Vascular , Animales , Materiales Biomiméticos/síntesis química , Células Cultivadas , Celulosa/síntesis química , Humanos , Masculino , Tamaño de la Partícula , Conejos , Ratas , Propiedades de Superficie
16.
Biodegradation ; 31(1-2): 47-56, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32193751

RESUMEN

Two culture media were tested for the production of bacterial nanocellulose (BNC) under static culture fermentation, one containing molasses (Mol-HS), the other molasses and corn steep liquor (Mol-CSL), as a source of carbon and nitrogen, respectively. These are low-cost nutrients widely available, which provide very good BNC productivities. However, the use of these substrates generates wastewaters with high organic loads. Anaerobic digestion is one of the most promising treatments for industrial wastewaters with high organic loads since, beyond removal of the organic matter, it generates energy, in form of biogas. The wastewaters from BNC fermentation were thus evaluated for their biochemical methane potential through anaerobic digestion. For this, two wastewaters streams were collected: (i) the culture medium obtained after fermentation (WaF) and (ii) the WaF combined with BNC washing wastewaters (WaW). These two effluents-WaF and WaW-were characterized regarding their chemical oxygen demand, total nitrogen, total and volatile solids, to assess their suitability for anaerobic digestion. The biochemical methane potential of WaF and WaW from Mol-CSL wastewaters was (387 ± 14 L kg-1 VS) and (354 ± 4 L kg-1 VS), corresponding to a methanization percentage of (86.9 ± 3.1) % and (79.5 ± 0.9) %, respectively. After treatment, the chemical oxygen demand of WaF and WaW was reduced by (89.2 ± 0.4) and (88.7 ± 1.5), respectively. An exploratory test using an Upflow Anaerobic Sludge Blanket reactor for WaW treatment was also performed. The reactor was operated with a organic loading rate of [(6.5 ± 0.1) g L-1 d-1] and hydraulic retention time of 3.33 days, allowing a chemical oxygen demand removal of 58% of WaW. Results here obtained demonstrate, for the first time, the high potential of AD for the valorisation of the BNC fermentation wastewaters.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Metano , Eliminación de Residuos Líquidos
17.
Mater Sci Eng C Mater Biol Appl ; 108: 110416, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923960

RESUMEN

Developing fibrous scaffolds with hierarchical structures that closely mimic natural extracellular matrix (ECM) is highly desirable. However, fabricating scaffolds with true nanofibers (<100 nm) and submicrofibers (<1 µm) remains a big challenge. In this work, to mimic the fibrillar structure of natural ECM, bacterial cellulose (BC) nanofibers were hybridized with cellulose acetate (CA) submicrofibers for the first time. The interpenetrated nano-submicron fibrous BC/CA scaffold was fabricated using the combined electrospinning and modified in situ biosynthesis method. The BC/CA scaffold has an integrated symmetrical nanostructure in which BC nanofibers (42 nm in diameter) penetrate into the submicrofibrous CA (820 nm in diameter) scaffold. The BC/CA scaffold shows an interconnected porous structure with a high porosity of >90%. Additionally, the combination of CA submicrofibers with BC nanofibers leads to significantly improved mechanical properties over nanofibrous BC and submicrofibrous CA scaffolds and enlarged pores over nanofibrous BC scaffold. In addition, the biological behaviors of prepared BC/CA on MC3T3-E1 cells were investigated. Results suggested that BC/CA scaffold is beneficial for cell migration and proliferation. Moreover, the BC/CA scaffold shows higher alkaline phosphatase (ALP) activity, and calcium depositions. In addition, the hierarchical structures can effectively improve the expression of osteogenic gene (ALP mRNA and Runx2 mRNA) and protein (ALP). We believe that the methodology might provide biomimetic morphological microenvironments for enhanced tissue regeneration.


Asunto(s)
Nanofibras/química , Andamios del Tejido/química , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Materiales Biomiméticos/química , Biomimética/métodos , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Celulosa/análogos & derivados , Ratones , Osteogénesis , Porosidad , Ingeniería de Tejidos/métodos
18.
Nanomaterials (Basel) ; 9(12)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795479

RESUMEN

This research investigated the development of bio-based composites comprising bacterial cellulose (BC), as obtained by static culture, and acrylated epoxidized soybean oil (AESO) as an alternative to leather. AESO was first emulsified; polyethylene glycol (PEG), polydimethylsiloxane (PDMS) and perfluorocarbon-based polymers were also added to the AESO emulsion, with the mixtures being diffused into the BC 3D nanofibrillar matrix by an exhaustion process. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the tested polymers penetrated well and uniformly into the bulk of the BC matrix. The obtained composites were hydrophobic and thermally stable up to 200 °C. Regarding their mechanical properties, the addition of different polymers lead to a decrease in the tensile strength and an increase in the elongation at break, overall presenting satisfactory performance as a potential alternative to leather.

19.
Appl Microbiol Biotechnol ; 103(21-22): 9143-9154, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31650194

RESUMEN

In this work, recycled paper sludge (RPS), composed of non-recyclable fibres, was used as a carbon source for bacterial nanocellulose (BNC) production. The biomass was enzymatically hydrolysed with Cellic CTec 2 to produce a sugar syrup with 45.40 g/L glucose, 1.69 g/L cellobiose and 2.89 g/L xylose. This hydrolysate was used for the optimization of BNC fermentation by static culture, using Komagataeibacter xylinus ATCC 700178, through response surface methodology (RSM). After analysis and validation of the model, a maximum BNC yield (5.69 g/L, dry basis) was obtained using 1.50% m/v RPS hydrolysate, 1.0% v/v ethanol and 1.45% m/v yeast extract/peptone (YE/P). Further, the BNC obtained was used to produce composites. A mixture of an amino-PolyDiMethylSiloxane-based softener, polyethyleneglycol (PEG) 400 and acrylated epoxidized soybean oil (AESO), was incorporated into the BNC membranes through an exhaustion process. The results show that BNC composites with distinct performances can be easily designed by simply varying the polymers percentage contents. This strategy represents a simple approach towards the production of BNC and BNC-based composites.


Asunto(s)
Celulosa/metabolismo , Gluconacetobacter xylinus/metabolismo , Aguas del Alcantarillado/microbiología , Purificación del Agua/métodos , Fermentación , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
20.
Microb Biotechnol ; 12(4): 650-661, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31119894

RESUMEN

This research aimed at producing malleable, breathable and water impermeable bacterial cellulose-based nanocomposites, by impregnating bacterial cellulose (BC) membranes with two commercial hydrophobic polymers used in textile finishing, Persoftal MS (polydimethylsiloxane) and Baygard EFN (perfluorocarbon), by an exhaustion process. These hydrophobic products penetrated the BC membranes and adsorbed tightly onto the surface of the nanofibres, across the entire depth of the material, as demonstrated by Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy studies. The water static contact angles, drop absorption over time and vapour permeability values showed that the composites were impermeable to liquid water but permeable to water vapour. The mechanical properties of the BC-nanocomposites were improved after incorporation of the hydrophobic products, in some of the formulations tested, overall presenting a satisfactory performance. Thus, through a simple and cost-effective process, hydrophobized, robust, malleable and breathable nanocomposites based on BC were obtained, featuring promising properties for application in the textile and shoe industries.


Asunto(s)
Bacterias/metabolismo , Biotecnología/métodos , Celulosa/metabolismo , Microbiología Industrial/métodos , Nanocompuestos/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Zapatos , Espectroscopía Infrarroja por Transformada de Fourier , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...