Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 23(2): e202100352, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34375042

RESUMEN

The fungal metabolite Fosfonochlorin features a chloroacetyl moiety that is unusual within known phosphonate natural product biochemistry. Putative biosynthetic genes encoding Fosfonochlorin in Fusarium and Talaromyces spp. were investigated through reactions of encoded enzymes with synthetic substrates and isotope labelling studies. We show that the early biosynthetic steps for Fosfonochlorin involve the reduction of phosphonoacetaldehyde to form 2-hydroxyethylphosphonic acid, followed by oxidative intramolecular cyclization of the resulting alcohol to form (S)-epoxyethylphosphonic acid. The latter reaction is catalyzed by FfnD, a rare example of a non-heme iron/2-(oxo)glutarate dependent oxacyclase. In contrast, FfnD behaves as a more typical oxygenase with ethylphosphonic acid, producing (S)-1-hydroxyethylphosphonic acid. FfnD thus represents a new example of a ferryl generating enzyme that can suppress the typical oxygen rebound reaction that follows abstraction of a substrate hydrogen by a ferryl oxygen, thereby directing the substrate radical towards a fate other than hydroxylation.


Asunto(s)
Compuestos Ferrosos/metabolismo , Fusarium/metabolismo , Ácidos Cetoglutáricos/metabolismo , Organofosfonatos/metabolismo , Talaromyces/metabolismo , Ciclización , Hidroxilación , Compuestos Organofosforados/metabolismo , Oxidación-Reducción
2.
Biochemistry ; 58(52): 5271-5280, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31046250

RESUMEN

PhnZ utilizes a mixed valence diiron(II/III) cofactor and O2 to oxidatively cleave the carbon-phosphorus bond of (R)-2-amino-1-hydroxyethylphosphonic acid to form glycine and orthophosphate. The active site residues Y24 and E27 are proposed to mediate induced-fit recognition of the substrate and access of O2 to one of the active site Fe ions. H62 is proposed to deprotonate the C1-hydroxyl of the substrate during catalysis. Kinetic isotope effects (KIEs), pH-rate dependence, and site-directed mutagenesis were used to probe the rate-determining transition state and the roles of these three active site residues. Primary deuterium KIE values of 5.5 ± 0.3 for D(V) and 2.2 ± 0.4 for D(V/K) were measured with (R)-2-amino[1-2H1]-1-hydroxyethylphosphonic acid, indicating that cleavage of the C1-H bond of the substrate is rate-limiting. This step is also rate-limiting for PhnZ Y24F, as shown by a significant deuterium KIE value of 2.3 ± 0.1 for D(V). In contrast, a different reaction step appears to be rate-limiting for the PhnZ E27A and H62A variants, which exhibited D(V) values near unity. A solvent KIE of 2.2 ± 0.3 for D2O(V) is observed for PhnZ. Significant solvent KIE values are also observed for the PhnZ Y24F and E27A variants. In contrast, the PhnZ H62A variant does not show a significant solvent KIE, suggesting that H62 is mediating proton transfer in the transition state. A proton inventory study with PhnZ indicates that 1.5 ± 0.6 protons are in flight in the rate-determining step. Overall, the rate-determining transition state for oxidative C-P bond cleavage by PhnZ is proposed to involve C-H bond cleavage that is coupled to deprotonation of the substrate C1-hydroxyl by H62.


Asunto(s)
Hierro/metabolismo , Oxigenasas/metabolismo , Ácidos Fosforosos/química , Ácidos Fosforosos/metabolismo , Dominio Catalítico , Cinética , Mutación , Oxidación-Reducción , Oxigenasas/química , Oxigenasas/genética , Solventes/química
3.
ACS Chem Biol ; 14(4): 735-741, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30810303

RESUMEN

Methylphosphonic acid is synthesized by marine bacteria and is a prominent component of dissolved organic phosphorus. Consequently, methylphosphonic acid also serves as a source of inorganic phosphate (Pi) for marine bacteria that are starved of this nutrient. Conversion of methylphosphonic acid into Pi is currently only known to occur through the carbon-phosphorus lyase pathway, yielding methane as a byproduct. In this work, we describe an oxidative pathway for the catabolism of methylphosphonic acid in Gimesia maris DSM8797. G. maris can use methylphosphonic acid as Pi sources despite lacking a phn operon encoding a carbon-phosphorus lyase pathway. Instead, the genome contains a locus encoding homologues of the non-heme Fe(II) dependent oxygenases HF130PhnY* and HF130PhnZ, which were previously shown to convert 2-aminoethylphosphonic acid into glycine and Pi. GmPhnY* and GmPhnZ1 were produced in E. coli and purified for characterization in vitro. The substrate specificities of the enzymes were evaluated with a panel of synthetic phosphonates. Via 31P NMR spectroscopy, it is demonstrated that the GmPhnY* converts methylphosphonic acid to hydroxymethylphosphonic acid, which in turn is oxidized by GmPhnZ1 to produce formic acid and Pi. In contrast, 2-aminoethylphosphonic acid is not a substrate for GmPhnY* and is therefore not a substrate for this pathway. These results thus reveal a new metabolic fate for methylphosphonic acid.


Asunto(s)
Escherichia coli/metabolismo , Liasas/metabolismo , Compuestos Organofosforados/metabolismo , Fosfatos/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Oxidación-Reducción
4.
Biochemistry ; 57(36): 5327-5338, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30125100

RESUMEN

3-Deoxy-d- manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the first step of lipopolysaccharide biosynthesis, namely condensation of phosphoenolpyruvate (PEP) with arabinose 5-phosphate (A5P), to produce KDO8P. We have characterized Campylobacter jejuni KDO8P synthase and its inhibition by KDO8P oxime. It was metal-dependent and homotetrameric and followed a rapid equilibrium sequential ordered ter ter kinetic mechanism in which Mn2+ bound first, followed by PEP and then A5P. It was inhibited by KDO8P oxime, an analogue of 3-deoxy-d- arabino-heptulosonate 7-phosphate (DAHP) oxime, a transition-state mimic of DAHP synthase. Inhibition was uncompetitive-like with respect to Mn2+ and competitive with respect to PEP and A5P. It displayed both fast-binding inhibition ( Ki = 10 µM) and slow-binding inhibition ( Ki* = 0.57 µM). The residence times on the enzyme ( tR) ranged from 27 min in the absence of free inhibitor to 69 h with excess inhibitor. The dependence of tR on the free inhibitor concentration suggested intersubunit communication within the homotetramer between high- and low-affinity sites. This confirms the generality of the oxime functional group, a small, neutral phosphate bioisostere, as an α-carboxyketose synthase inhibitor and highlights the challenge that intersubunit communication poses to effective inhibition.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Campylobacter jejuni/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Oximas/química , Oximas/farmacología , Sitios de Unión , Catálisis , Cinética , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...