Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7962, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261494

RESUMEN

Three-dimensional (3D) tomography is a powerful investigative tool for many scientific domains, going from materials science, to engineering, to medicine. Many factors may limit the 3D resolution, often spatially anisotropic, compromising the precision of the information retrievable. A neural network, designed for video-frame interpolation, is employed to enhance tomographic images, achieving cubic-voxel resolution. The method is applied to distinct domains: the investigation of the morphology of printed graphene nanosheets networks, obtained via focused ion beam-scanning electron microscope (FIB-SEM), magnetic resonance imaging of the human brain, and X-ray computed tomography scans of the abdomen. The accuracy of the 3D tomographic maps can be quantified through computer-vision metrics, but most importantly with the precision on the physical quantities retrievable from the reconstructions, in the case of FIB-SEM the porosity, tortuosity, and effective diffusivity. This work showcases a versatile image-augmentation strategy for optimizing 3D tomography acquisition conditions, while preserving the information content.

2.
Nat Commun ; 15(1): 278, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177181

RESUMEN

Networks of solution-processed nanomaterials are becoming increasingly important across applications in electronics, sensing and energy storage/generation. Although the physical properties of these devices are often completely dominated by network morphology, the network structure itself remains difficult to interrogate. Here, we utilise focused ion beam - scanning electron microscopy nanotomography (FIB-SEM-NT) to quantitatively characterise the morphology of printed nanostructured networks and their devices using nanometre-resolution 3D images. The influence of nanosheet/nanowire size on network structure in printed films of graphene, WS2 and silver nanosheets (AgNSs), as well as networks of silver nanowires (AgNWs), is investigated. We present a comprehensive toolkit to extract morphological characteristics including network porosity, tortuosity, specific surface area, pore dimensions and nanosheet orientation, which we link to network resistivity. By extending this technique to interrogate the structure and interfaces within printed vertical heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA