Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34298684

RESUMEN

Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.

2.
Cancer Drug Resist ; 3: 572-585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33073205

RESUMEN

AIM: Gemcitabine is a frontline agent for locally-advanced and metastatic pancreatic ductal adenocarcinoma (PDAC), but neither gemcitabine alone nor in combination produces durable remissions of this tumor type. We developed three PDAC patient-derived xenograft (PDX) models with gemcitabine resistance (gemR) acquired in vivo, with which to identify mechanisms of resistance relevant to drug exposure in vivo and to evaluate novel therapies. METHODS: Mice bearing independently-derived PDXs received 100 mg/kg gemcitabine once or twice weekly. Tumors initially responded, but regrew on treatment and were designated gemR. We used immunohistochemistry to compare expression of proteins previously associated with gemcitabine resistance [ribonucleotide reductase subunit M1 (RRM1), RRM2, human concentrative nucleoside transporter 1 (hCNT1), human equilibrative nucleoside transporter 1 (hENT1), cytidine deaminase (CDA), and deoxycytidine kinase (dCK)] in gemR and respective gemcitabine-naive parental tumors. RESULTS: Parental and gemR tumors did not differ in tumor cell morphology, amount of tumor-associated stroma, or expression of stem cell markers. No consistent pattern of expression of the six gemR marker proteins was observed among the models. Increases in RRM1 and CDA were consistent with in vitro-derived gemR models. However, rather than the expected decreases of hCNT1, hENT1, and dCK, gemR tumors expressed no change in or higher levels of these gemR marker proteins than parental tumors. CONCLUSION: These models are the first PDAC PDX models with gemcitabine resistance acquired in vivo. The data indicate that mechanisms identified in models with resistance acquired in vitro are unlikely to be the predominant mechanisms when resistance is acquired in vivo. Ongoing work focuses on characterizing unidentified mechanisms of gemR and on identifying agents with anti-tumor efficacy in these gemR models.

3.
EBioMedicine ; 44: 419-430, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31126889

RESUMEN

BACKGROUND: DNA repair deficiency accumulates DNA damage and sensitizes tumor cells to PARP inhibitors (PARPi). Based on our observation that the BET inhibitor JQ1 increases levels of DNA damage, we evaluated the efficacy of JQ1 + the PARPi olaparib in preclinical models of pancreatic ductal adenocarcinoma (PDAC). We also addressed the mechanism by which JQ1 increased DNA damage. METHODS: The effect of JQ1 + olaparib on in vivo tumor growth was assessed with patient-derived xenograft (PDX) models of PDAC. Changes in protein expression were detected by immunohistochemistry and immunoblot. In vitro growth inhibition and mechanistic studies were done using alamarBlue, qRT-PCR, immunoblot, immunofluorescence, ChIP, and shRNA knockdown assays. FINDINGS: Tumors exposed in vivo to JQ1 had higher levels of the DNA damage marker γH2AX than tumors exposed to vehicle only. Increases in γH2AX was concomitant with decreased expression of DNA repair proteins Ku80 and RAD51. JQ1 + olaparib inhibited the growth of PDX tumors greater than either drug alone. Mechanistically, ChIP assays demonstrated that JQ1 decreased the association of BRD4 and BRD2 with promoter loci of Ku80 and RAD51, and shRNA data showed that expression of Ku80 and RAD51 was BRD4- and BRD2-dependent in PDAC cell lines. INTERPRETATION: The data are consistent with the hypothesis that JQ1 confers a repair deficient phenotype and the consequent accumulation of DNA damage sensitizes PDAC cells to PARPi. Combinations of BET inhibitors with PARPi may provide a novel strategy for treating PDAC. FUND: NIH grants R01CA208272 and R21CA205501; UAB CMB T32 predoctoral training grant.


Asunto(s)
Azepinas/farmacología , Carcinoma Ductal Pancreático/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Triazoles/farmacología , Ácido Anhídrido Hidrolasas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Histonas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
4.
Cancer Lett ; 436: 75-86, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120964

RESUMEN

Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United States. Although most patients respond to frontline therapy, virtually all patients relapse with chemoresistant disease. This study addresses the hypothesis that carboplatin or tamoxifen + FTY720, a sphingosine analogue, will minimize or circumvent drug-resistance in ovarian cancer cells and tumor models. In vitro data demonstrate that FTY720 sensitized two drug-resistant (A2780. cp20, HeyA8. MDR) and two high-grade serous ovarian cancer cell lines (COV362, CAOV3) to carboplatin, a standard of care for patients with ovarian cancer, and to the selective estrogen receptor modulator tamoxifen. FTY720 + tamoxifen was synergistic in vitro, and combinations of FTY720 + carboplatin or + tamoxifen were more effective than each single agent in a patient-derived xenograft model of ovarian carcinoma. FTY720 + tamoxifen arrested tumor growth. FTY720 + carboplatin induced tumor regressions, with tumor volumes reduced by ∼86% compared to initial tumor volumes. Anti-tumor efficacy was concomitant with increases in intracellular proapoptotic lipid ceramide. The data suggest that FTY720 + tamoxifen or carboplatin may be effective in treating ovarian tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carboplatino/farmacología , Clorhidrato de Fingolimod/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carboplatino/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Clorhidrato de Fingolimod/administración & dosificación , Humanos , Ratones , Neoplasias Ováricas/patología , Tamoxifeno/administración & dosificación
5.
Mol Cancer Ther ; 17(1): 107-118, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142067

RESUMEN

Cholangiocarcinoma (CCA) is a fatal disease with a 5-year survival of <30%. For a majority of patients, chemotherapy is the only therapeutic option, and virtually all patients relapse. Gemcitabine is the first-line agent for treatment of CCA. Patients treated with gemcitabine monotherapy survive ∼8 months. Combining this agent with cisplatin increases survival by ∼3 months, but neither regimen produces durable remissions. The molecular etiology of this disease is poorly understood. To facilitate molecular characterization and development of effective therapies for CCA, we established a panel of patient-derived xenograft (PDX) models of CCA. We used two of these models to investigate the antitumor efficacy and mechanism of action of the bromodomain inhibitor JQ1, an agent that has not been evaluated for the treatment of CCA. The data show that JQ1 suppressed the growth of the CCA PDX model CCA2 and demonstrate that growth suppression was concomitant with inhibition of c-Myc protein expression. A second model (CCA1) was JQ1-insensitive, with tumor progression and c-Myc expression unaffected by exposure to this agent. Also selective to CCA2 tumors, JQ1 induced DNA damage and apoptosis and downregulated multiple c-Myc transcriptional targets that regulate cell-cycle progression and DNA repair. These findings suggest that c-Myc inhibition and several of its transcriptional targets may contribute to the mechanism of action of JQ1 in this tumor type. We conclude that BET inhibitors such as JQ1 warrant further investigation for the treatment of CCA. Mol Cancer Ther; 17(1); 107-18. ©2017 AACR.


Asunto(s)
Azepinas/uso terapéutico , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Triazoles/uso terapéutico , Animales , Apoptosis , Azepinas/farmacología , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Daño del ADN , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Front Oncol ; 7: 327, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29376028

RESUMEN

Therapy for rhabdomyosarcoma (RMS) has generally been limited to combinations of conventional cytotoxic agents similar to regimens originally developed in the late 1960s. Recently, identification of molecular alterations through next-generation sequencing of individual tumor specimens has facilitated the use of more targeted therapeutic approaches for various malignancies. Such targeted therapies have revolutionized treatment for some cancer types. However, malignancies common in children, thus far, have been less amenable to such targeted therapies. This report describes the clinical course of an 8-year-old female with embryonal RMS having anaplastic features. This patient experienced multiple relapses after receiving various established and experimental therapies. Genomic testing of this RMS subtype revealed mutations in BCOR, ARID1A, and SETD2 genes, each of which contributes to epigenetic regulation and interacts with or modifies the activity of histone deacetylases (HDAC). Based on these findings, the patient was treated with the HDAC inhibitor vorinostat as a single agent. The tumor responded transiently followed by subsequent disease progression. We also examined the efficacy of vorinostat in a patient-derived xenograft (PDX) model developed using tumor tissue obtained from the patient's most recent tumor resection. The antitumor activity of vorinostat observed with the PDX model reflected clinical observations in that obvious areas of tumor necrosis were evident following exposure to vorinostat. Histologic sections of tumors harvested from PDX tumor-bearing mice treated with vorinostat demonstrated induction of necrosis by this agent. We propose that the evaluation of clinical efficacy in this type of preclinical model merits further evaluation to determine if PDX models predict tumor sensitivity to specific agents and/or combination therapies.

7.
PLoS One ; 8(10): e78183, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194913

RESUMEN

Pancreatic cancer is the one of the deadliest of all malignancies. The five year survival rate for patients with this disease is 3-5%. Thus, there is a compelling need for novel therapeutic strategies to improve the clinical outcome for patients with pancreatic cancer.  Several groups have demonstrated for other types of solid tumors that early passage human tumor xenograft models can be used to define some genetic and molecular characteristics of specific human tumors. Published studies also suggest that murine tumorgraft models (early passage xenografts derived from direct implantation of primary tumor specimens) may be useful in identifying compounds with efficacy against specific tumor types.  Because pancreatic cancer is a fatal disease and few well-characterized model systems are available for translational research, we developed and characterized a panel of pancreatic tumorgraft models for biological evaluation and therapeutic drug testing.  Of the 41 primary tumor specimens implanted subcutaneously into mice, 35 produced viable tumorgraft models.  We document the fidelity of histological and morphological characteristics and of KRAS mutation status among primary (F0), F1, and F2 tumors for the twenty models that have progressed to the F3 generation.  Importantly, our procedures produced a take rate of 85%, higher than any reported in the literature. Primary tumor specimens that failed to produce tumorgrafts were those that either contained <10% tumor cells or that were obtained from significantly smaller primary tumors. In view of the fidelity of characteristics of primary tumor specimens through at least the F2 generation in mice, we propose that these tumorgraft models represent a useful tool for identifying critical characteristics of pancreatic tumors and for evaluating potential therapies. 


Asunto(s)
Carcinoma Ductal Pancreático/fisiopatología , Modelos Animales de Enfermedad , Xenoinjertos/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Animales , Análisis Mutacional de ADN , Humanos , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
8.
J Cardiovasc Electrophysiol ; 17(2): 189-97, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16533257

RESUMEN

INTRODUCTION: Patients with bradycardia can have severe tachyarrhythmias but it is unclear whether bradycardia alone can induce arrhythmias or whether an additional substrate is necessary. While several animal models of ventricular tachycardia (VT) exist, no model has been reported to mimic the clinical condition of spontaneous VT and sudden cardiac death (SCD) in the presence of bradycardia and chronic myocardial infarction (MI) in large animals without manipulation of the autonomic nervous system. We tested the hypothesis that MI and bradycardia cause more spontaneous sustained VT than does bradycardia alone. METHODS AND RESULTS: Sheep (42-56 kg) underwent atrioventricular (AV) node catheter ablation alone (n = 5) or AV node ablation and 150 minutes of angioplasty balloon occlusion of the left anterior descending coronary artery (n = 9). An implantable cardioverter defibrillator delivered rescue shocks and demand pacing at 90 beats per minute for the first week and at 40 beats per minute thereafter. Electrograms were continuously radiotelemetered and recorded for 6 weeks. Acute post-MI VT disappeared by day 4. The sudden bradycardia on day 8 triggered numerous premature ventricular contractions (PVCs) and episodes of sustained VT lasting >30 seconds during the next 5 weeks. There were 43 episodes of sustained VT and no spontaneous ventricular fibrillation (VF) with bradycardia alone. However, in the presence of both MI and bradycardia there were 970 episodes of VT/VF (P < 0.05) and three deaths at days 13, 15, and 34. The average 24-hour count of PVCs was similar at day 7 between the two groups but by days 11 and 40, the PVC counts were 35 times and 4 times greater, respectively, in the presence of bradycardia and chronic MI compared to bradycardia alone. No significant difference in the incidence of PVCs was detected because of large individual variation between the two groups (P = 0.21). A high PVC count did not appear to predict SCD. CONCLUSION: The combination of MI and bradycardia secondary to AV node ablation in sheep produces a higher incidence of VT than bradycardia alone, suggesting that this preparation can serve as a model for the study of VT and sudden cardiac death.


Asunto(s)
Bradicardia/complicaciones , Muerte Súbita Cardíaca/etiología , Infarto del Miocardio/complicaciones , Taquicardia Ventricular/etiología , Animales , Ablación por Catéter , Enfermedad Crónica , Desfibriladores Implantables , Modelos Animales de Enfermedad , Ecocardiografía , Ovinos , Telemetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...