Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 920280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060770

RESUMEN

One of the most desirable targets for HBV medications is the sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for the hepatitis B virus (HBV). N-myristoylated preS1 2-48 (Myrcludex B or Hepcludex), an NTCP-binding peptide from the large surface protein of HBV, has been developed as the first-in-class entry inhibitor. However, its relatively large molecular weight contributes to increased immunogenicity and antibody production. As a result, it is preferable to look for an NTCP-binding peptide with a smaller size. To do this, we developed a human cell surface display strategy and screened peptides based on preS1-21. PreS1-21 (genotype D) was extended by 7 random amino acids and fused with mCherry and FasL transmembrane domain. The pooled constructs were transfected into HEK293 cells by using the transposon/transposase system to create a library displaying various peptides on the cell surface with red fluorescence. On the other hand, we expressed NTCP protein fused with EGFP on HEK293 and used the membrane lysate containing NTCP-GFP as the bait protein to select peptides with increased NTCP affinity. After 7 cycles of selection, the deep sequencing results revealed that some polypeptides were more than 1,000 times enriched. Further screening of the mostly enriched 10 peptides yields the peptide preS1-21-pep3. Replacing the preS1-21 sequence of preS1-21-pep3 with those from different genotypes demonstrated that the consensus sequence of genotype A-F had the best performance. The peptide (Myr-preS1-21-pep3) was synthesized and tested on the HepG2-NTCP cell model. The results showed that Myr-preS1-21-pep3 is approximately 10 times more potent than the initial peptide Myr-preS1-21 in preventing HBV infection. In conclusion, we developed a new strategy for screening peptides binding to membrane proteins and identified a new NTCP-binding peptide with a much smaller size than Hepcludex.

2.
J Biotechnol ; 357: 100-107, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35963591

RESUMEN

Caspases are a family of evolutionary conserved cysteine proteases that play key roles in programmed cell death and inflammation. Among the methods for the detection of caspase activity, biosensors based on luciferases have advantages in genetical encoding and convenience in assay. In this study, we constructed a new set of caspase biosensors based on NanoLuc luciferase. This kind of sensors, named NanoLock, work in dark-to-bright model, with the help of a NanoLuc quencher peptide (HiBiT-R/D) mutated from HiBiT. Optimized NanoLock responded to proteases with high signal to noise ratio (S/N), 1233-fold activation by tobacco etch virus protease in HEK293 cells and > 500-fold induction to caspase 3 in vitro. We constructed NanoLocks for the detection of caspase 1, 3, 6, 7, 8, 9, and 10, and assays in HEK293 cells demonstrated that these sensors performed better than commercial kits in the aspect of S/N and convenience. We further established a cell line stably expressing NanoLock-casp 6 and provided a proof-of-concept for the usage of this cell line in the high throughput screening of caspase 6 modulator.


Asunto(s)
Apoptosis , Caspasas , Caspasa 3 , Caspasas/genética , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo
3.
iScience ; 25(6): 104416, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35663023

RESUMEN

The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.

4.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413624

RESUMEN

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , Humanos , Luciferasas , SARS-CoV-2
5.
Front Microbiol ; 12: 783040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858381

RESUMEN

Recombinant DNA technology is a vital method in human hepatitis B virus (HBV), producing reporter viruses or vectors for gene transferring. Researchers have engineered several genes into the HBV genome for different purposes; however, a systematic analysis of recombinant strategy is lacking. Here, using a 500-bp deletion strategy, we scanned the HBV genome and identified two regions, region I (from nt 2,118 to 2,814) and region II (from nt 99 to 1,198), suitable for engineering. Ten exogenous genes, including puromycin N-acetyl transferase gene (Pac), blasticidin S deaminase gene (BSD), Neomycin-resistance gene (Neo), Gaussia luciferase (Gluc), NanoLuc (Nluc), copGFP, mCherry, UnaG, eGFP, and tTA1, were inserted into these two regions and fused into the open reading frames of hepatitis B core protein (HBC) and hepatitis B surface protein (HBS) via T2A peptide. Recombination of 9 of the 10 genes at region 99-1198 and 5 of the 10 genes at region 2118-2814 supported the formation of relaxed circular (RC) DNA. HBV DNA and HBV RNA assays implied that exogenous genes potentially abrogate RC DNA by inducing the formation of adverse secondary structures. This hypothesis was supported because sequence optimization of the UnaG gene based on HBC sequence rescued RC DNA formation. Findings from this study provide an informative basis and a valuable method for further constructing and optimizing recombinant HBV and imply that DNA sequence might be intrinsically a potential source of selective pressure in the evolution of HBV.

6.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32382737

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas para Inmunoenzimas/métodos , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adulto , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Mediciones Luminiscentes , Masculino , Persona de Mediana Edad , Pandemias , Péptidos/inmunología , Neumonía Viral/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad , Proteínas Virales/inmunología
7.
Artículo en Inglés | MEDLINE | ID: mdl-30224531

RESUMEN

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Asunto(s)
Antivirales/farmacología , Diterpenos/farmacología , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/efectos de los fármacos , Indoles/farmacología , Multimerización de Proteína/efectos de los fármacos , Proteínas del Núcleo Viral/antagonistas & inhibidores , Cápside/efectos de los fármacos , Cápside/metabolismo , Cápside/ultraestructura , Línea Celular , Replicación del ADN/efectos de los fármacos , ADN Viral/antagonistas & inhibidores , ADN Viral/biosíntesis , ADN Viral/genética , Genes Reporteros , Células HEK293 , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo
8.
J Virol Methods ; 255: 52-59, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29447911

RESUMEN

Fusion core proteins of Hepatitis B virus can be used to study core protein functions or capsid trafficking. A problem in constructing fusion core proteins is functional impairment of the individual domains in these fusion proteins, might due to structural interference. We reported a method to construct fusion proteins of Hepatitis B virus core protein (HBc) in which the functions of fused domains were partially kept. This method follows two principles: (1) fuse heterogeneous proteins at the N terminus of HBc; (2) use long Glycine-serine linkers between the two domains. Using EGFP and RFP as examples, we showed that long flexible G4S linkers can effectively separate the two domains in function. Among these fusion proteins constructed, GFP-G4S186-HBc and RFP-G4S47-HBc showed the best efficiency in rescuing the replication of an HBV replicon deficient in the core protein expression, though both of the two fusion proteins failed to support the formation of the relaxed circular DNA. These fluorescent protein-tagged HBcs might help study related to HBc or capsids tracking in cells.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B/virología , Nucleocápside/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Línea Celular , Virus de la Hepatitis B/genética , Humanos , Nucleocápside/química , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...