Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675031

RESUMEN

Lysozyme, a common antimicrobial agent, is widely used in the food, biopharmaceutical, chemical, and medicine fields. Rapid and effective isolation of lysozymes is an everlasting topic. In this work, ethylene vinyl alcohol (EVOH) copolymer nanofibrous membranes with a gradient porous structure used for lysozyme adsorption were prepared through layer-by-layer nanofiber wet-laying and a cost-efficient ultraviolet (UV)-assisted graft-modification method, where benzophenone was used as an initiator and 2-acrylamide-2-methylpropanesulfonic acid as a modifying monomer. As indicated in the Fourier Transform Infrared (FTIR) and X-ray photoelectric energy spectrometer (XPS) investigation, sulfonic acid groups were introduced on the surface of the modified nanofibrous membrane, which possessed the ability to adsorb lysozyme. Compared with membranes with homogenous porous structures, membranes with a gradient porous structure present higher static (335 mg/g) and dynamic adsorption capacities (216.3 mg/g). Meanwhile, the adsorption capacity remained high after five cycles of the adsorption-desorption process. The results can be attributed to the gradient porous structure rather than the highest porosity and specific surface area. This suggests that the membrane with comprehensive separation performance can be designed from the view of the transmembrane porous structure, which is of significance for the development of next-generation advanced chromatographic membranes.

2.
ALTEX ; 39(2): 297­314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064273

RESUMEN

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Asunto(s)
Alternativas a las Pruebas en Animales , Dispositivos Laboratorio en un Chip , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Preparaciones Farmacéuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
3.
Toxicology ; 446: 152614, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33199268

RESUMEN

Many in vitro gastrointestinal models have been developed with the hope that they will continue to improve in their similarity to the organs from which they were isolated. Intestinal organoids isolated from various species are now being used to investigate physiology and pathophysiology. In this study, intestinal stem cells were isolated from adult rat duodenum and culture conditions were optimized to promote the growth, differentiation and development of 3D organoids. We optimized and characterized rat duodenal organoids with light and electron microscopy, immunofluorescence and notably, global mRNA expression. The metabolic capacity of these cultures was investigated using probe substrates for multiple phase I and phase II drug metabolizing enzymes and found to be in line with previous results from intestinal primary cultures and a significant improvement over immortalized cell lines. Over the course of differentiation, the gene expression profiles of the rat duodenal organoids were consistent with expected trends in differentiation to various cell lineages reflecting the duodenum in vivo. Further, incubations of these cultures with naproxen and celecoxib resulted in cytotoxicity consistent with the direct cytotoxic effects of these drugs to duodenum in vivo. Based on these characteristics, the rat duodenal organoids described herein will provide a novel platform for investigating a wide variety of mechanistic questions.


Asunto(s)
Antiinflamatorios no Esteroideos/toxicidad , Diferenciación Celular/efectos de los fármacos , Duodeno/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Organoides/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Duodeno/citología , Duodeno/metabolismo , Femenino , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos , Células Madre/metabolismo
4.
Drug Metab Dispos ; 48(8): 724-734, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482623

RESUMEN

Despite a recent expansion in the recognition of the potential utility of coproporphyrin (CP) as an endogenous biomarker of organic anion-transporting polypeptide (OATP) 1B activity, there have been few detailed studies of CP's pharmacokinetic behavior and an overall poor understanding of its pharmacokinetic fate from tissues and excretion. Here, we describe the pharmacokinetics of octadeuterium-labeled coproporphyrin I (CPI-d8) in cynomolgus monkeys following oral and intravenous administration. CPI-d8 has a half-life and bioavailability of 7.6 hours and 3.2%, respectively. Cynomolgus monkeys received oral cyclosporin A (CsA) at 4, 20, and 100 mg/kg which yielded maximum blood concentrations (C max) and area under the plasma concentration-time curve (AUC) values of 0.19, 2.5, and 3.8 µM, and 2.7, 10.5, and 26.6 µM·h, respectively. The apparent CsA-dose dependent increase in the AUC ratio of CPI-d8 (1.8, 6.2, and 10.5), CPI (1.1, 1.4, and 4.4), and CPIII (1.1, 1.8, and 4.6) at 4, 20, and 100 mg, respectively. In contrast, the plasma concentrations of CPI and CPIII were generally not affected by intravenous administration of the renal organic anion and cation transporter inhibitors (probenecid and pyrimethamine, respectively). In addition, tritium-labeled coproporphyrin I ([3H]CPI) showed specific and rapid distribution to the liver, intestine, and kidney after an intravenous dose in mice using quantitative whole-body autoradiography. Rifampin markedly reduced the liver and intestinal uptake of [3H]CPI while increasing the kidney uptake. Taken together, these results suggest that hepatic OATP considerably affects the disposition of CPI in animal models, indicating CPI is a sensitive and selective endogenous biomarker of OATP inhibition. SIGNIFICANCE STATEMENT: This study demonstrated that coproporphyrin I (CPI) has favorable oral absorption, distribution, and elimination profiles in monkeys and mice as an endogenous biomarker. It also demonstrated its sensitivity and selectivity as a probe of organic anion-transporting polypeptide (OATP) 1B activity. The study reports, for the first time, in vivo pharmacokinetics, tissue distribution, sensitivity, and selectivity of CPI as an OATP1B endogenous biomarker in animals. The data provide preclinical support for exploration of its utility as a sensitive and selective circulating OATP biomarker in humans.


Asunto(s)
Coproporfirinas/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Administración Intravenosa , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Biomarcadores/análisis , Biomarcadores/metabolismo , Coproporfirinas/análisis , Coproporfirinas/farmacocinética , Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Semivida , Absorción Intestinal , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Macaca fascicularis , Masculino , Ratones , Rifampin/administración & dosificación , Distribución Tisular
5.
Lab Chip ; 20(3): 446-467, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31932816

RESUMEN

Over the last decade, progress has been made on the development of microphysiological systems (MPS) for absorption, distribution, metabolism, and excretion (ADME) applications. Central to this progress has been proof of concept data generated by academic and industrial institutions followed by broader characterization studies, which provide evidence for scalability and applicability to drug discovery and development. In this review, we describe some of the advances made for specific tissue MPS and outline the desired functionality for such systems, which are likely to make them applicable for practical use in the pharmaceutical industry. Single organ MPS platforms will be valuable for modelling tissue-specific functions. However, dynamic organ crosstalk, especially in the context of disease or toxicity, can only be obtained with the use of inter-linked MPS models which will enable scientists to address questions at the intersection of pharmacokinetics (PK) and efficacy, or PK and toxicity. In the future, successful application of MPS platforms that closely mimic human physiology may ultimately reduce the need for animal models to predict ADME outcomes and decrease the overall risk and cost associated with drug development.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Preparaciones Farmacéuticas/metabolismo , Animales , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Preparaciones Farmacéuticas/química
6.
Xenobiotica ; 50(6): 621-629, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31566996

RESUMEN

Accurate prediction of in vivo metabolic pathways in humans can be challenging because in vitro liver matrices may fail to produce certain in vivo metabolites.Rat and human spheroids, generated from cryopreserved hepatocytes in media that contained minimal amount of serum, maintained morphology, viability and cytochrome P450 (CYP) activities for at least a week without media exchange.With spheroid cultures, multiple Phase I and Phase II metabolites were observed in rat and human spheroid cultures that were incubated with loratadine (LOR) for multiple days. Consistent with in vivo observations, 3-hydroxydesloratadine, (3-OH-DL), along with its glucuronide, were observed in human spheroids, but not in rat spheroids. Interestingly, the putative intermediate metabolite leading to 3-OH-DL, DL-N-glucuronide, was observed in incubations with both rat and human spheroids. In conclusion, hepatocyte spheroid were capable of recapitulating the inter-species differences in metabolism between human and rat for LOR, therefore, it may represent a viable model for studying complex metabolic pathways.


Asunto(s)
Loratadina/metabolismo , Esferoides Celulares/metabolismo , Animales , Glucurónidos , Hepatocitos/metabolismo , Humanos , Loratadina/análogos & derivados , Masculino , Redes y Vías Metabólicas , Ratas
7.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31799979

RESUMEN

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Asunto(s)
Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip , Hígado/química , Preparaciones Farmacéuticas/química , Medición de Riesgo
8.
Drug Metab Dispos ; 47(11): 1352-1360, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427432

RESUMEN

Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.


Asunto(s)
Ciclosporina/farmacología , Transportador 1 de Catión Orgánico/antagonistas & inhibidores , Interacciones Farmacológicas , Células HEK293 , Hepatocitos/metabolismo , Humanos , Masculino , Metformina/farmacocinética , Transportador 1 de Catión Orgánico/fisiología
9.
J Pharmacol Exp Ther ; 368(1): 136-145, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361237

RESUMEN

Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentration-time curve (AUC) of PDA by 3.1-fold (dosed alone; P < 0.05), and 3.2-fold (coadministered with FSM; P < 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P > 0.05) and 2.1-fold (P < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.


Asunto(s)
Proteína 1 de Transporte de Anión Orgánico/fisiología , Transportadores de Anión Orgánico Sodio-Independiente/fisiología , Ácido Piridóxico/sangre , Adolescente , Adulto , Biomarcadores/sangre , Estudios Cruzados , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
10.
Bioanalysis ; 10(18): 1473-1485, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215261

RESUMEN

AIM: A robust LC-MS/MS assay was developed to quantify endogenous 1, 14-tetradecanedioic acid (TDA) and 1, 16-hexadecanedioic acid (HDA) in human plasma as potential biomarkers for evaluating drug-drug interactions mediated by the hepatic drug transporters, organic anion-transporting polypeptides. RESULTS: This assay was validated using fit-for-purpose approach over standard curve range of 2.5-1000 nM for TDA and HDA using analyte-free charcoal-stripped human plasma as the surrogate matrix. Chromatographic separation condition was successfully optimized to separate TDA from an interference peak while maintaining both analytes in neutral forms to minimize carryover issue. CONCLUSION: The described assay is currently applied to a clinical study for evaluating TDA/HDA as potential substitute biomarkers for drug-drug interaction studies.


Asunto(s)
Análisis Químico de la Sangre/métodos , Transportadores de Anión Orgánico/metabolismo , Ácidos Palmíticos/sangre , Espectrometría de Masas en Tándem , Métodos Analíticos de la Preparación de la Muestra , Biomarcadores/sangre , Calibración , Cromatografía Liquida , Humanos , Límite de Detección , Modelos Lineales
11.
Br J Clin Pharmacol ; 84(1): 130-141, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28850715

RESUMEN

AIMS: BMS-823778 is an inhibitor of 11ß-hydroxysteroid dehydrogenase type-1, and thus a potential candidate for Type 2 diabetes treatment. Here, we investigated the metabolism and pharmacokinetics of BMS-823778 to understand its pharmacokinetic variations in early clinical trials. METHODS: The metabolism of BMS-823778 was characterized in multiple in vitro assays. Pharmacokinetics were evaluated in healthy volunteers, prescreened as CYP2C19 extensive metabolizers (EM) or poor metabolizers (PM), with a single oral dose of [14 C]BMS-823778 (10 mg, 80 µCi). RESULTS: Three metabolites (<5%) were identified in human hepatocytes and liver microsomes (HLM) incubations, including two hydroxylated metabolites (M1 and M2) and one glucuronide conjugate (M3). As the most abundant metabolite, M1 was formed mainly through CYP2C19. M1 formation was also correlated with CYP2C19 activities in genotyped HLM. In humans, urinary excretion of dosed radioactivity was significantly higher in EM (68.8%; 95% confidence interval 61.3%, 76.3%) than in PM (47.0%; 43.5%, 50.6%); only small portions (<2%) were present in faeces or bile from both genotypes. In plasma, BMS-823778 exposure in PM was significantly (5.3-fold, P = 0.0097) higher than in EM. Furthermore, total radioactivity exposure was significantly higher (P < 0.01) than BMS-823778 exposure in all groups, indicating the presence of metabolites. M1 was the only metabolite observed in plasma, and much lower in PM. In urine, the amount of M1 and its oxidative metabolite in EM was 7-fold of that in PM, while more glucuronide conjugates of BMS-823778 and M1 were excreted in PM. CONCLUSIONS: CYP2C19 polymorphisms significantly impacted systemic exposure and metabolism pathways of BMS-823778 in humans.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Citocromo P-450 CYP2C19/genética , Polimorfismo Genético , Piridinas/farmacocinética , Eliminación Renal/genética , Triazoles/farmacocinética , Adulto , Esquema de Medicación , Genotipo , Glucurónidos/metabolismo , Voluntarios Sanos , Hepatocitos/metabolismo , Humanos , Hidroxilación , Masculino , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Piridinas/administración & dosificación , Piridinas/sangre , Piridinas/metabolismo , Triazoles/administración & dosificación , Triazoles/sangre , Triazoles/metabolismo , Adulto Joven
12.
Drug Metab Dispos ; 46(2): 178-188, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29162614

RESUMEN

Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted.


Asunto(s)
Biomarcadores/sangre , Ácido Homovanílico/sangre , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ácido Piridóxico/sangre , Animales , Transporte Biológico/fisiología , Línea Celular , Células HEK293 , Humanos , Macaca fascicularis , Metabolómica/métodos , Probenecid/metabolismo
13.
J Nucl Med ; 59(3): 529-535, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29025984

RESUMEN

The programmed death protein (PD-1) and its ligand (PD-L1) play critical roles in a checkpoint pathway cancer cells exploit to evade the immune system. A same-day PET imaging agent for measuring PD-L1 status in primary and metastatic lesions could be important for optimizing drug therapy. Herein, we have evaluated the tumor targeting of an anti-PD-L1 adnectin after 18F-fluorine labeling. Methods: An anti-PD-L1 adnectin was labeled with 18F in 2 steps. This synthesis featured fluorination of a novel prosthetic group, followed by a copper-free click conjugation to a modified adnectin to generate 18F-BMS-986192. 18F-BMS-986192 was evaluated in tumors using in vitro autoradiography and PET with mice bearing bilateral PD-L1-negative (PD-L1(-)) and PD-L1-positive (PD-L1(+)) subcutaneous tumors. 18F-BMS-986192 was evaluated for distribution, binding, and radiation dosimetry in a healthy cynomolgus monkey. Results:18F-BMS-986192 bound to human and cynomolgus PD-L1 with a dissociation constant of less than 35 pM, as measured by surface plasmon resonance. This adnectin was labeled with 18F to yield a PET radioligand for assessing PD-L1 expression in vivo. 18F-BMS-986192 bound to tumor tissues as a function of PD-L1 expression determined by immunohistochemistry. Radioligand binding was blocked in a dose-dependent manner. In vivo PET imaging clearly visualized PD-L1 expression in mice implanted with PD-L1(+), L2987 xenograft tumors. Two hours after dosing, a 3.5-fold-higher uptake (2.41 ± 0.29 vs. 0.82 ± 0.11 percentage injected dose per gram, P < 0.0001) was observed in L2987 than in control HT-29 (PD-L1(-)) tumors. Coadministration of 3 mg/kg ADX_5322_A02 anti-PD-L1 adnectin reduced tumor uptake at 2 h after injection by approximately 70%, whereas HT-29 uptake remained unchanged, demonstrating PD-L1-specific binding. Biodistribution in a nonhuman primate showed binding in the PD-L1-rich spleen, with rapid blood clearance through the kidneys and bladder. Binding in the PD-L1(+) spleen was reduced by coadministration of BMS-986192. Dosimetry estimates indicate that the kidney is the dose-limiting organ, with an estimated human absorbed dose of 2.20E-01 mSv/MBq. Conclusion:18F-BMS-986192 demonstrated the feasibility of noninvasively imaging the PD-L1 status of tumors by small-animal PET studies. Clinical studies with 18F-BMS-986192 are under way to measure PD-L1 expression in human tumors.


Asunto(s)
Antígeno B7-H1/metabolismo , Radioisótopos de Flúor , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Marcaje Isotópico , Ligandos , Macaca fascicularis , Ratones , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Distribución Tisular
14.
Exp Biol Med (Maywood) ; 242(16): 1579-1585, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28622731

RESUMEN

Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Procedimientos Analíticos en Microchip/métodos , Microfluídica/métodos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip
15.
Drug Metab Dispos ; 45(8): 908-919, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576766

RESUMEN

Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.


Asunto(s)
Ácidos y Sales Biliares/sangre , Biomarcadores/sangre , Coproporfirinas/sangre , Sulfato de Deshidroepiandrosterona/sangre , Transportadores de Anión Orgánico/antagonistas & inhibidores , Ácidos Palmíticos/sangre , Adolescente , Adulto , Área Bajo la Curva , Transporte Biológico/efectos de los fármacos , Línea Celular , Interacciones Farmacológicas/fisiología , Células HEK293 , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Rifampin/farmacología , Rosuvastatina Cálcica/farmacología , Adulto Joven
16.
J Pharmacol Exp Ther ; 362(3): 385-394, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28645914

RESUMEN

The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Ácidos y Sales Biliares/metabolismo , Cromanos/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Hipoglucemiantes/farmacología , Tiazolidinedionas/farmacología , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Animales , Bilis/metabolismo , Colesterol 7-alfa-Hidroxilasa/biosíntesis , Colesterol 7-alfa-Hidroxilasa/genética , Técnicas de Inactivación de Genes , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Troglitazona , Regulación hacia Arriba/efectos de los fármacos
17.
Anal Chem ; 89(9): 5144-5151, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28402627

RESUMEN

With the development of modern instrumentation and technologies, mass spectrometry based assays have played an important role in protein bioanalysis. We have developed a novel strategy by combining the "bottom-up" and "top-down" approaches using both high-resolution (HRMS) and selected reaction monitoring (SRM) based mass spectrometric detection to quantify a positron emission tomography (PET) detection tracer for an oncology marker. Monkey plasma samples were processed by immunocapture purification, followed by liquid chromatography (LC) with HRMS full scan analysis. Summed multiple charge states and multiple isotopes per charge state of the analyte were used during quantitation for optimized sensitivity. After the HRMS analysis, the remaining samples were digested by trypsin, followed by SRM detection. The HRMS approach provided the solution to a unique problem related to stability of the protein conjugate by quantifying the intact protein. The SRM method only measured a signature peptide generated from enzymatic digestion, but had a lower quantitation limit to meet the sensitivity requirement to assess the pharmacokinetics in a toxicology study. Both methods demonstrated good sensitivity, accuracy, precision and robustness, and the results revealed that there was no significant difference between the data sets obtained from both methods, indicating no in vivo or ex vivo degradation occurred in the incurred samples after dosing. This workflow not only provided the quantitative results for pharmacokinetic evaluation, but also revealed valuable in vivo stability information on the intact protein level.


Asunto(s)
Cromatografía Liquida/métodos , Fibronectinas/sangre , Fragmentos de Péptidos/sangre , Radiofármacos/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Fibronectinas/química , Radioisótopos de Flúor , Macaca fascicularis , Masculino , Fragmentos de Péptidos/química , Radiofármacos/química , Flujo de Trabajo
18.
Chem Res Toxicol ; 29(12): 2040-2057, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989144

RESUMEN

The formation of drug-protein adducts is considered an important feature in the pharmacological and toxicological profiles of many drugs. Mechanistic insights into the role of specific protein adduct formation in pharmacology and toxicology remain scarce, partly due to the availability of tools to identify and characterize the specific protein adducts, and partly due to the scarcity of relevant in vitro and in vivo predictive models. This review serves to provide a review on the current state of science on the chemistry, toxicology, and methods of detection and characterization of drug-protein adducts and to offer some perspective on the future directions of research into the role of protein adducts in drug effects and toxicity.


Asunto(s)
Preparaciones Farmacéuticas/química , Proteínas/química , Pruebas de Toxicidad , Animales , Humanos , Modelos Biológicos
19.
Acta Pharm Sin B ; 6(5): 460-467, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27709015

RESUMEN

To assess targeting of an epothilone folate conjugate (BMS-753493) to the folate receptor (FR)-overexpressed tumor in mice bearing both FR+ and FR- tumors, a series of experiments were conducted by quantitative whole-body autoradiography (QWBA) and LC-MS/MS following i.v. administration of BMS-753493 or its active moiety, BMS-748285 in mice bearing FR+ (98M109) and FR- (M109) tumors. QWBA showed [3H]BMS-753493-derived radioactivity was extensively distributed to various tissues. The FR over-expressing 98M109 tumors showed consistently higher level of radioactivity than FR-negative tumors (i.e., M109 tumors) up to 48 h post dose of [3H]BMS-753493, despite the magnitude of difference between the tumors is relatively small (generally 3~5-fold). The radioactivity level in 98M109 tumors was 2~12-fold of normal tissues except intestine/content at 48 h post dose. No selective radioactivity uptake into 98M109 tumors over M109 or normal tissues was observed after i.v. administration of the active epothilone, [3H]BMS-748285. LC-MS/MS measurements demonstrated that the concentrations of BMS-748285, presumably from hydrolysis of the folate conjugate, in 98M109 tumors were greater than those in M109 tumors after i.v. administration of BMS-753493 (2-3-fold) whereas no differential uptake in the tumors following BMS-748285 administration. Those data were consistent with radioactivity determinations. Those results demonstrated that the folate conjugation in BMS-753493 enabled moderately preferential distribution of the active epothilone to FR over-expressing 98M109 tumors, thereby supporting targeted delivery of cytotoxics through the folate receptor.

20.
Drug Metab Rev ; 48(4): 473-501, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27533622

RESUMEN

The bioactivation of drugs is often associated with toxicological outcomes; however, for most cases, the causal relationship between bioactivation and toxicity is not well established despite extensive research that attempts to elucidate the mechanisms leading to the formation of chemically reactive species, presumably the initial step towards adverse reactions. Due to rapid advancement in the research of cytochrome P450s (CYPs) and the prevalence of CYP involvement in the metabolic clearance of pharmaceuticals, CYP-mediated bioactivation is widely investigated and reviewed, while non-CYP-mediated bioactivation has not been emphasized. The widespread use of metabolic stability screening in drug discovery, however, has led to the identification of new chemical entities that rely on non-CYP enzymes for clearance, and the number of drugs that undergo metabolism via these enzymes has increased. Non-CYP enzymes can be divided into four general categories according to their enzymatic function, namely, oxidative, reductive, conjugative and hydrolytic. The aim of this review is to complement the existing literature on CYP-mediated metabolism by focusing on bioactivation mediated non-CYP enzymes and provide representative examples in each category.


Asunto(s)
Biotransformación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Preparaciones Farmacéuticas/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hidrólisis , Fase II de la Desintoxicación Metabólica , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...