Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 19(2)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415738

RESUMEN

Osteoporosis (OP) is a common metabolic bone disease. Excessive osteoclastic activity significantly contributes to the development of OP. Icariin (ICA) is a flavonol glycoside derived from herbal plants and possesses curative effects on postmenopausal OP and bone fracture. This study aimed to investigate the effects of ICA on osteoclast differentiation induced by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) and the involvement of estrogen receptorα(ERα) and RANK signaling cascade in this process. RANKL was used to induce the differentiation of RAW264.7 cells to into osteoclasts. Small interfering RNA technique was used to knockdown ERαin cells. Cell counting kit-8 assay was performed to determine the cytotoxicity of ICA. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells was quantified by TRAP staining. RANKL induced the differentiation of RAW264.7 cells into osteoclasts, while ICA abolished the pro-osteoporotic effect of RANKL. Moreover, ERαknockdown abolished the effects of ICA on RANKL-induced osteoclastogenesis. Further exploration revealed that ICA inhibited the phosphorylation ofc-Src in osteoclasts via regulating ERα, while inactivation ofc-Src reversed ERαknockdown-promoted osteoclastogenesis. Lastly, ICA inhibited the activation of the mitogen-activated protein kinase signaling pathway and downregulated the expressions of target osteoclastogenic proteins in RANKL-treated RAW 264.7 cells, while ERαknockdown almost completely diminished the effects of ICA. ICA inhibited RANKL-induced osteoclast differentiation via regulating the ERα/c-Src/RANK signaling. These findings elucidated a novel mechanism by which ICA exerts an anti-osteoporotic effect.


Asunto(s)
Receptor alfa de Estrógeno , Flavonoides , Osteoporosis , Humanos , Osteoclastos , Receptor Activador del Factor Nuclear kappa-B , Transducción de Señal
2.
Front Pharmacol ; 14: 1236893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680712

RESUMEN

Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/ß-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.

3.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175126

RESUMEN

Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/ß-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.


Asunto(s)
Flavanonas , Osteoporosis , Humanos , Osteogénesis , Huesos , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavanonas/química , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...