Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aesthetic Plast Surg ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831066

RESUMEN

BACKGROUND: Porous high-density polyethylene (pHDPE) is an alternative material for a septal extension graft (SEG) in oriental rhinoplasty when autologous cartilage is limited. Although nasal packing (NP) and trans-septal suturing (TSS) techniques are routine procedures to obviate the dead space after septoplasty, they are associated with certain discomforts and complications. OBJECTIVE: To investigate the application of a submucosal trans-septal suturing (STSS) technique after SEG with pHDPE. METHODS: A prospective study was conducted on 60 female participants who underwent SEG with pHDPE. The participants were randomly divided into the NP group and STSS group. The extra surgical duration of NP and STSS, pain, nasal obstruction, and sleeping disturbance as well as postoperative complications were recorded and compared between groups. RESULTS: No significant difference was found between group NP and group STSS in terms of mean age. The mean extra surgical duration of group STSS was significantly longer than group NP. There were significant higher pains of group NP at 24 hours and 48 hours postoperatively, compared with group STSS. The NP group also experienced significantly more nasal obstruction and sleep disturbance within 48h postoperatively compared to the STSS group. There was one infection in each group, minor bleeding in two NP patients, and one STSS patient. There was no major bleeding, hematoma, graft exposure, or septal perforation in both groups. CONCLUSION: Although STSS needs a longer extra surgical duration than NP, it significantly improves the patient's postoperative comfort with a faster return to normal respiration compared to NP. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

2.
Appl Environ Microbiol ; 87(22): e0156221, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524896

RESUMEN

rac-Dichlorprop, a commonly used phenoxyalkanoic acid herbicide, is frequently detected in environments and poses threats to environmental safety and human health. Microbial consortia are thought to play key roles in rac-dichlorprop degradation. However, the compositions of the microbial consortia involved in rac-dichlorprop degradation remain largely unknown. In this study, DNA stable isotope probing (SIP) and metagenomic analysis were integrated to reveal the key microbial consortium responsible for rac-dichlorprop degradation in a rac-dichlorprop-degrading enrichment. OTU340 (Sphingobium sp.) and OTU348 (Sphingopyxis sp.) were significantly enriched in the rac-[13C]dichlorprop-labeled heavy DNA fractions. A rac-dichlorprop degrader, Sphingobium sp. strain L3, was isolated from the enrichment by a traditional enrichment method but with additional supplementation of the antibiotic ciprofloxacin, which was instructed by metagenomic analysis of the associations between rac-dichlorprop degraders and antibiotic resistance genes. As revealed by functional profiling of the metagenomes of the heavy DNA, the genes rdpA and sdpA, involved in the initial degradation of the (R)- and (S)-enantiomers of dichlorprop, respectively, were mostly taxonomically assigned to Sphingobium species, indicating that Sphingopyxis species might harbor novel dichlorprop-degrading genes. In addition, taxonomically diverse bacterial genera such as Dyella, Sphingomonas, Pseudomonas, and Achromobacter were presumed to synergistically cooperate with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. IMPORTANCE Understanding of the key microbial consortium involved in the degradation of the phenoxyalkanoic acid herbicide rac-dichlorprop is pivotal for design of synergistic consortia used for enhanced bioremediation of herbicide-contaminated sites. However, the composition of the microbial consortium and the interactions between community members during the biodegradation of rac-dichlorprop are unclear. In this study, DNA-SIP and metagenomic analysis were integrated to reveal that the metabolite 2,4-dichlorophenol degraders Dyella, Sphingomonas, Pseudomonas, and Achromobacter synergistically cooperated with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. Our study provides new insights into the synergistic degradation of rac-dichlorprop at the community level and implies the existence of novel degrading genes for rac-dichlorprop in nature.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Herbicidas , Marcaje Isotópico , Metagenoma , Ácido 2,4-Diclorofenoxiacético/metabolismo , Bacterias/metabolismo , ADN , Herbicidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...