Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 53(1): 42-59.e11, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32109383

RESUMEN

Heart regeneration requires cardiomyocyte proliferation. It is thought that formation of polyploid nuclei establishes a barrier for cardiomyocyte proliferation, but the mechanisms are largely unknown. Here, we show that the nuclear lamina filament Lamin B2 (Lmnb2), whose expression decreases in mice after birth, is essential for nuclear envelope breakdown prior to progression to metaphase and subsequent division. Inactivating Lmnb2 decreased metaphase progression, which led to formation of polyploid cardiomyocyte nuclei in neonatal mice, which, in turn, decreased myocardial regeneration. Increasing Lmnb2 expression promoted cardiomyocyte M-phase progression and cytokinesis and improved indicators of myocardial regeneration in neonatal mice. Inactivating LMNB2 in human iPS cell-derived cardiomyocytes reduced karyokinesis and increased formation of polyploid nuclei. In primary cardiomyocytes from human infants with heart disease, modifying LMNB2 expression correspondingly altered metaphase progression and ploidy of daughter nuclei. In conclusion, Lmnb2 expression is essential for karyokinesis in mammalian cardiomyocytes and heart regeneration.


Asunto(s)
Corazón/fisiología , Lamina Tipo B/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Animales , Núcleo Celular/metabolismo , División del Núcleo Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Células Madre Pluripotentes Inducidas/citología , Ratones , Cicatrización de Heridas/fisiología
2.
Sci Transl Med ; 11(513)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597755

RESUMEN

One million patients with congenital heart disease (CHD) live in the United States. They have a lifelong risk of developing heart failure. Current concepts do not sufficiently address mechanisms of heart failure development specifically for these patients. Here, analysis of heart tissue from an infant with tetralogy of Fallot with pulmonary stenosis (ToF/PS) labeled with isotope-tagged thymidine demonstrated that cardiomyocyte cytokinesis failure is increased in this common form of CHD. We used single-cell transcriptional profiling to discover that the underlying mechanism of cytokinesis failure is repression of the cytokinesis gene ECT2, downstream of ß-adrenergic receptors (ß-ARs). Inactivation of the ß-AR genes and administration of the ß-blocker propranolol increased cardiomyocyte division in neonatal mice, which increased the number of cardiomyocytes (endowment) and conferred benefit after myocardial infarction in adults. Propranolol enabled the division of ToF/PS cardiomyocytes in vitro. These results suggest that ß-blockers could be evaluated for increasing cardiomyocyte division in patients with ToF/PS and other types of CHD.


Asunto(s)
Citocinesis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Propranolol/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Ratas
3.
PLoS One ; 11(5): e0155456, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27175488

RESUMEN

BACKGROUND: We previously developed and validated a strategy for stimulating heart regeneration by administration of recombinant neuregulin (rNRG1), a growth factor, in mice. rNRG1 stimulated proliferation of heart muscle cells, cardiomyocytes, and was most effective when administration began during the neonatal period. Our results suggested the use of rNRG1 to treat pediatric patients with heart failure. However, administration in this age group may stimulate growth outside of the heart. METHODS: NRG1 and ErbB receptor expression was determined by RT-PCR. rNRG1 concentrations in serum were quantified by ELISA. Mice that received protocols of recombinant neuregulin1-ß1 administration (rNRG1, 100 ng/g body weight, daily subcutaneous injection for the first month of life), previously shown to induce cardiac regeneration, were examined at pre-determined intervals. Somatic growth was quantified by weighing. Organ growth was quantified by MRI and by weighing. Neoplastic growth was examined by MRI, visual inspection, and histopathological analyses. Phospho-ERK1/2 and S6 kinase were analyzed with Western blot and ELISA, respectively. RESULTS: Lung, spleen, liver, kidney, brain, and breast gland exhibited variable expression of the NRG1 receptors ErbB2, ErbB3, ErbB4, and NRG1. Body weight and tibia length were not altered in mice receiving rNRG1. MRI showed that administration of rNRG1 did not alter the volume of the lungs, liver, kidneys, brain, or spinal cord. Administration of rNRG1 did not alter the weight of the lungs, spleen, liver, kidneys, or brain. MRI, visual inspection, and histopathological analyses showed no neoplastic growth. Follow-up for 6 months showed no alteration of somatic or organ growth. rNRG1 treatment increased the levels of phospho-ERK1/2, but not phospho-S6 kinase. CONCLUSIONS: Administration protocols of rNRG1 for stimulating cardiac regeneration in mice during the first month of life did not induce unwanted growth effects. Further studies may be required to determine whether this is the case in a corresponding human population.


Asunto(s)
Envejecimiento/fisiología , Corazón/fisiología , Morfogénesis/efectos de los fármacos , Neoplasias/patología , Neurregulina-1/administración & dosificación , Neurregulina-1/farmacología , Regeneración/efectos de los fármacos , Animales , Animales Recién Nacidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/enzimología , Ratones , Neurregulina-1/sangre , Neurregulina-1/genética , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Quinasas S6 Ribosómicas/metabolismo
4.
Nat Protoc ; 11(3): 542-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26890681

RESUMEN

The introduction of injury models for neonatal mouse hearts has accelerated research on the mechanisms of cardiac regeneration in mammals. However, some existing models, such as apical resection and ligation of the left anterior descending artery, produce variable results, which may be due to technical difficulties associated with these methods. Here we present an alternative model for the study of cardiac regeneration in neonatal mice in which cryoinjury is used to induce heart injury. This model yields a reproducible injury size, does not induce known mechanisms of cardiac regeneration and leads to a sustained reduction of cardiac function. This protocol uses reusable cryoprobes that can be assembled in 5 min, with the entire procedure taking 15 min per pup. The subsequent heart collection and fixation takes 2 d to complete. Cryoinjury results in a myocardial scar, and the size of injury can be scaled by the use of different cryoprobes (0.5 and 1.5 mm). Cryoinjury models are medically relevant to diseases in human infants with heart disease. In summary, the myocardial cryoinjury model in neonatal mice described here is a useful tool for cardiac translational and regeneration research.


Asunto(s)
Lesiones Cardíacas/patología , Corazón/fisiología , Miocardio/patología , Regeneración , Animales , Animales Recién Nacidos , Criocirugía/efectos adversos , Modelos Animales de Enfermedad , Congelación/efectos adversos , Lesiones Cardíacas/etiología , Humanos , Lactante , Ratones , Ratones Endogámicos ICR , Medicina Regenerativa , Investigación Biomédica Traslacional
5.
Sci Transl Med ; 7(281): 281ra45, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834111

RESUMEN

Therapies developed for adult patients with heart failure have been shown to be ineffective in pediatric clinical trials, leading to the recognition that new pediatric-specific therapies for heart failure must be developed. Administration of the recombinant growth factor neuregulin-1 (rNRG1) stimulates regeneration of heart muscle cells (cardiomyocytes) in adult mice. Because proliferation-competent cardiomyocytes are more abundant in growing mammals, we hypothesized that administration of rNRG1 during the neonatal period might be more effective than in adulthood. If so, neonatal rNRG1 delivery could be a new therapeutic strategy for treating heart failure in pediatric patients. To evaluate the effectiveness of rNRG1 administration in cardiac regeneration, newborn mice were subjected to cryoinjury, which induced myocardial dysfunction and scar formation and decreased cardiomyocyte cell cycle activity. Early administration of rNRG1 to mice from birth to 34 days of age improved myocardial function and reduced the prevalence of transmural scars. In contrast, administration of rNRG1 from 4 to 34 days of age only transiently improved myocardial function. The mechanisms of early administration involved cardiomyocyte protection (38%) and proliferation (62%). We also assessed the ability of rNRG1 to stimulate cardiomyocyte proliferation in intact cultured myocardium from pediatric patients. rNRG1 induced cardiomyocyte proliferation in myocardium from infants with heart disease who were less than 6 months of age. Our results identify an effective time period within which to execute rNRG1 clinical trials in pediatric patients for the stimulation of cardiomyocyte regeneration.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Miocardio/patología , Miocitos Cardíacos/patología , Neurregulinas/farmacología , Regeneración/efectos de los fármacos , Animales , Animales Recién Nacidos , Enfermedades Cardiovasculares/patología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Niño , Cicatriz/patología , Frío , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lactante , Ratones , Miocitos Cardíacos/efectos de los fármacos , Neurregulinas/administración & dosificación , Receptor ErbB-4/metabolismo
6.
Dis Model Mech ; 6(6): 1459-69, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23929941

RESUMEN

Numerous mouse models have utilized Cre-loxP technology to modify gene expression. Adverse effects of Cre recombinase activity have been reported, including in the heart. However, the mechanisms associated with cardiac Cre toxicity are largely unknown. Here, we show that expression of Cre in cardiomyocytes induces a DNA damage response, resulting in cardiomyocyte apoptosis, cardiac fibrosis and cardiac dysfunction. In an effort to increase the recombination efficiency of a widely used tamoxifen-sensitive Cre transgene under control of the α-myosin-heavy-chain promoter (αMHC-MerCreMer), we observed myocardial dysfunction and decreased survival, which were dependent on the dose of tamoxifen injected. After excluding a Cre-independent contribution by tamoxifen, we found that Cre induced myocardial fibrosis, activation of pro-fibrotic genes and cardiomyocyte apoptosis. Examination of the molecular mechanisms showed activation of DNA damage response signaling and p53 stabilization in the absence of loxP sites, suggesting that Cre induced illegitimate DNA breaks. Cardiomyocyte apoptosis was also induced by expressing Cre using adenoviral transduction, indicating that the effect was not dependent on genomic integration of the transgene. Cre-mediated homologous recombination at loxP sites was dose-dependent and had a ceiling effect at ∼80% of cardiomyocytes showing recombination. By titrating the amount of tamoxifen to maximize recombination while minimizing animal lethality, we determined that 30 µg tamoxifen/g body weight/day injected on three consecutive days is the optimal condition for the αMHC-MerCreMer system to induce recombination in the Rosa26-lacZ strain. Our results further highlight the importance of experimental design, including the use of appropriate genetic controls for Cre expression.


Asunto(s)
Daño del ADN/efectos de los fármacos , Insuficiencia Cardíaca/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Análisis de Supervivencia , Tamoxifeno/farmacología , Animales , Apoptosis , Relación Dosis-Respuesta a Droga , Ratones , Miocitos Cardíacos/patología , Tamoxifeno/administración & dosificación , Tamoxifeno/efectos adversos
7.
Toxicol In Vitro ; 26(7): 1143-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22841634

RESUMEN

Mutations in the parkin gene are linked to development of juvenile onset of Parkinson's disease and recent studies have reported that parkin can protect against increased oxidative stress and mitochondrial dysfunction caused by a variety of oxidative and toxic insults. Overexpression of parkin has also been reported to selectively protect dopaminergic neurons from Mn toxicity. Accordingly, in this paper we compare the effect that mutations in parkin have on Mn toxicity and associated apoptotic signals in normal and human B lymphocyte cell lines containing a homozygous mutation in the gene. Results of these studies reveal that Mn toxicity was similar in both control and mutant parkin lymphocyte cells indicating that cell death caused by Mn was not altered in cells devoid of parkin activity. In contrast, Mn did inhibit mitochondrial function to a greater extent in cells devoid of active parkin as indicated by a decrease in ATP production although mitochondrial membrane potential was essentially unaffected. Consistent with inactive parkin influencing the Mn response is the observation of increased activity in the down-stream apoptotic signal, caspase 3. In summary, results reported in this paper demonstrate that mutations in parkin can lead to functional changes in potential signaling processes known to provoke Mn toxicity. The selectivity and magnitude of this response, however, does not necessarily lead to cell death in lymphocytes which are devoid of dopamine.


Asunto(s)
Linfocitos B/efectos de los fármacos , Cloruros/toxicidad , Mutación , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfato/metabolismo , Adulto , Apoptosis/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Caspasa 3/metabolismo , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Dopamina/deficiencia , Dopamina/metabolismo , Humanos , Masculino , Compuestos de Manganeso , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...