Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 198, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232074

RESUMEN

Compartmentalization is a vital aspect of living cells to orchestrate intracellular processes. In a similar vein, constructing dynamic and responsive sub-compartments is key to synthetic cell engineering. In recent years, liquid-liquid phase separation via coacervation has offered an innovative avenue for creating membraneless organelles (MOs) within artificial cells. Here, we present a lab-on-a-chip system to reversibly trigger peptide-based coacervates within cell-mimicking confinements. We use double emulsion droplets (DEs) as our synthetic cell containers while pH-responsive elastin-like polypeptides (ELPs) act as the coacervate system. We first present a high-throughput microfluidic DE production enabling efficient encapsulation of the ELPs. The DEs are then harvested to perform multiple MO formation-dissolution cycles using pH as well as temperature variation. For controlled long-term visualization and modulation of the external environment, we developed an integrated microfluidic device for trapping and environmental stimulation of DEs, with negligible mechanical force, and demonstrated a proof-of-principle osmolyte-based triggering to induce multiple MO formation-dissolution cycles. In conclusion, our work showcases the use of DEs and ELPs in designing membraneless reversible compartmentalization within synthetic cells via physicochemical triggers. Additionally, presented on-chip platform can be applied over a wide range of phase separation and vesicle systems for applications in synthetic cells and beyond.

2.
ACS Appl Mater Interfaces ; 15(38): 45336-45344, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37707425

RESUMEN

Biomolecular condensates are macromolecular complexes formed by liquid-liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells.


Asunto(s)
Elastina , Péptidos , Elastina/genética , Elastina/química , Péptidos/química , Temperatura , Concentración de Iones de Hidrógeno
3.
J Vis Exp ; (193)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-37010275

RESUMEN

Microfluidics is a widely used tool to generate droplets and vesicles of various kinds in a controlled and high-throughput manner. Liposomes are simplistic cellular mimics composed of an aqueous interior surrounded by a lipid bilayer; they are valuable in designing synthetic cells and understanding the fundamentals of biological cells in an in vitro fashion and are important for applied sciences, such as cargo delivery for therapeutic applications. This article describes a detailed working protocol for an on-chip microfluidic technique, octanol-assisted liposome assembly (OLA), to produce monodispersed, micron-sized, biocompatible liposomes. OLA functions similarly to bubble blowing, where an inner aqueous (IA) phase and a surrounding lipid-carrying 1-octanol phase are pinched off by surfactant-containing outer fluid streams. This readily generates double-emulsion droplets with protruding octanol pockets. As the lipid bilayer assembles at the droplet interface, the pocket spontaneously detaches to give rise to a unilamellar liposome that is ready for further manipulation and experimentation. OLA provides several advantages, such as steady liposome generation (>10 Hz), efficient encapsulation of biomaterials, and monodispersed liposome populations, and requires very small sample volumes (~50 µL), which can be crucial when working with precious biologicals. The study includes details on microfabrication, soft-lithography, and surface passivation, which are needed to establish OLA technology in the lab. A proof-of-principle synthetic biology application is also shown by inducing the formation of biomolecular condensates inside the liposomes via transmembrane proton flux. It is anticipated that this accompanying video protocol will facilitate the readers to establish and troubleshoot OLA in their labs.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Ingeniería Biomédica , Bioingeniería , Octanoles , Agua
4.
ACS Synth Biol ; 11(8): 2869-2879, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35948429

RESUMEN

Engineering synthetic cells has a broad appeal, from understanding living cells to designing novel biomaterials for therapeutics, biosensing, and hybrid interfaces. A key prerequisite to creating synthetic cells is a three-dimensional container capable of orchestrating biochemical reactions. In this study, we present an easy and effective technique to make cell-sized porous containers, coined actinosomes, using the interactions between biomolecular condensates and the actin cytoskeleton. This approach uses polypeptide/nucleoside triphosphate condensates and localizes actin monomers on their surface. By triggering actin polymerization and using osmotic gradients, the condensates are transformed into containers, with the boundary made up of actin filaments and polylysine polymers. We show that the guanosine triphosphate (GTP)-to-adenosine triphosphate (ATP) ratio is a crucial parameter for forming actinosomes: insufficient ATP prevents condensate dissolution, while excess ATP leads to undesired crumpling. Permeability studies reveal the porous surface of actinosomes, allowing small molecules to pass through while restricting bigger macromolecules within the interior. We show the functionality of actinosomes as bioreactors by carrying out in vitro protein translation within them. Actinosomes are a handy addition to the synthetic cell platform, with appealing properties like ease of production, inherent encapsulation capacity, and a potentially active surface to trigger signaling cascades and form multicellular assemblies, conceivably useful for biotechnological applications.


Asunto(s)
Células Artificiales , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Nucleótidos/metabolismo , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA