Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692017

RESUMEN

The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Humanos , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenasa , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35862216

RESUMEN

A once-weekly oral dose of isoniazid and rifapentine for 3 months (3HP) is recommended by the CDC for treatment of latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of M. tuberculosis CDC1551 via aerosol. Six animals were treated with 3HP and 6 were left untreated. The animals were imaged via PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to assess reactivation of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent bacilli or extrapulmonary spread until the study end point. PET/CT demonstrated the presence of significantly more granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated tuberculosis (TB) reactivation following SIV coinfection, while none of the treated animals reactivated to ATB. 3HP treatment effectively reduced persistent infection with M. tuberculosis and prevented reactivation of TB in latently infected macaques.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Isoniazida/farmacología , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/microbiología , Pulmón , Macaca mulatta , Tomografía Computarizada por Tomografía de Emisión de Positrones , Rifampin/análogos & derivados
3.
Methods Mol Biol ; 2452: 227-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35554911

RESUMEN

With the advent of the novel SARS-CoV-2, the entire world has been thrown into chaos with severe disruptions from a normal life. While the entire world was going chaotic, the researchers throughout the world were struggling to contribute to the best of their capabilities to advance the understanding of this new pandemic and fast track the development of novel therapeutics and vaccines. While various animal models have helped a lot to understand the basic physiology, nonhman primates have been promising and much more successful in modelling human diseases compared to other available clinical models. Here we describe the different aspects of modelling the SARS-CoV-2 infection in NHPs along with the associated methods used in NHP immunology.


Asunto(s)
COVID-19 , Animales , Modelos Animales de Enfermedad , Pandemias , Primates , SARS-CoV-2
4.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855621

RESUMEN

Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.


Asunto(s)
Antirretrovirales/farmacología , Coinfección , Tuberculosis Latente/metabolismo , Mycobacterium tuberculosis/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/metabolismo , Animales , Coinfección/tratamiento farmacológico , Coinfección/metabolismo , Coinfección/microbiología , Coinfección/virología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología
5.
mBio ; 12(6): e0318921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903057

RESUMEN

Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell population comprised of immature myeloid cells and myeloid progenitors with very potent immunosuppressive potential. MDSCs are reported to be abundant in the lungs of active tuberculosis (TB) patients. We sought to perform an in-depth study of MDSCs during latent TB infection (LTBI) and active TB (ATB) using the nonhuman primate (NHP) model of pulmonary TB. We found a higher proportion of granulocytic, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the lungs of ATB animals compared to those with LTBI or naive control animals. Active disease in the lung, but not LTBI, was furthermore associated with higher proliferation, expansion, and immunosuppressive capabilities of PMN-MDSCs, as shown by enhanced expression of Ki67, indoleamine 2,3-dioxygenase (IDO1), interleukin-10 (IL-10), matrix metallopeptidase 9 (MMP-9), inducible nitric oxide synthase (iNOS), and programmed death-ligand 1 (PD-L1). These immunosuppressive PMN-MDSCs specifically localized to the lymphocytic cuff at the periphery of the granulomas in animals with ATB. Conversely, these cells were scarcely distributed in interstitial lung tissue and the inner core of granulomas. This spatial regulation suggests an important immunomodulatory role of PMN-MDSCs by restricting T cell access to the TB granuloma core and can potentially explain dysfunctional anti-TB responses in active granuloma. Our results raise the possibility that the presence of MDSCs can serve as a biomarker for ATB, while their disappearance can indicate successful therapy. Furthermore, MDSCs may serve as a potential target cell for adjunctive TB therapy. IMPORTANCE Myeloid cells are immunocytes of innate origin that orchestrate the first response toward pathogens via immune surveillance (uptake and killing), antigen presentation, and initiation of adaptive immunity by T cell stimulation. However, MDSCs are a subset of innate immunocytes that deviate to an immunoregulatory phenotype. MDSCs possess strong immunosuppressive capabilities that are induced in autoimmune, malignant neoplastic, and chronic inflammatory diseases. Induction of MDSCs has been found in peripheral blood, bronchoalveolar lavage (BAL) fluid, and pleural effusions of active TB patients, but their precise localization in lung tissue and in TB granulomas remains unclear due to challenges associated with sampling lungs and granulomas from active TB patients. Nonhuman primates (NHPs) are an important animal model with TB granulomas that closely mimic those found in humans and can therefore be used for studies that are otherwise challenging with patient material. Herein, we study MDSC localization in the lungs of NHPs exhibiting latent and active TB. Our findings reveal that MDSCs localize and exert their immunosuppressive roles at the periphery rather than in the core of TB granulomas.


Asunto(s)
Granuloma/inmunología , Tuberculosis Latente/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Modelos Animales de Enfermedad , Femenino , Granuloma/microbiología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Tuberculosis Latente/genética , Tuberculosis Latente/microbiología , Macaca mulatta , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología
7.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340034

RESUMEN

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Asunto(s)
COVID-19/veterinaria , Callithrix/inmunología , Pulmón/inmunología , Macaca mulatta/inmunología , Enfermedades de los Monos/virología , Papio/inmunología , SARS-CoV-2/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Antivirales/inmunología , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , COVID-19/diagnóstico por imagen , COVID-19/inmunología , COVID-19/patología , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunoglobulina G/inmunología , Inflamación/patología , Pulmón/virología , Masculino , Enfermedades de los Monos/inmunología , Células Mieloides/inmunología , Carga Viral , Esparcimiento de Virus
8.
J Clin Invest ; 130(10): 5171-5179, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32544085

RESUMEN

While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.


Asunto(s)
Antirretrovirales/uso terapéutico , Coinfección/tratamiento farmacológico , Tuberculosis Latente/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Animales , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente Activa , Carga Bacteriana , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral/efectos de los fármacos
9.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32554933

RESUMEN

Mycobacterium tuberculosis-specific (M. tuberculosis-specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis-specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis-specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis-specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.


Asunto(s)
Tuberculosis Latente/genética , Pulmón/inmunología , Receptores CCR6/genética , Receptores CXCR3/genética , Tuberculosis Pulmonar/genética , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Pulmón/microbiología , Pulmón/patología , Macaca mulatta , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Células TH1/inmunología , Células TH1/microbiología , Células Th17/inmunología , Células Th17/microbiología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
10.
Indian J Tuberc ; 66(1): 87-91, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30797290

RESUMEN

BACKGROUND: Private healthcare is choice of point of care for 70% of Indians. Multidrug resistant tuberculosis (MDR-TB) treatment is costly and involves duration as long as 2 years. AIM: To estimate costs to patients undergoing treatment for MDR-TB. METHODS: A health-economics questionnaire was administered to 50 consecutive patients who successfully completed ambulatory private treatment for MDR-TB. Direct costs included drug costs, investigations, consultation fees, travel costs, hospitalisation and invasive procedures and cost prior to presentation to us. Indirect costs included loss of income. RESULTS: Of our cohort of 50 patients, 36 had pulmonary TB while 14 had extra-pulmonary TB (EPTB). 40 had MDR-TB and 10 had XDR-TB. There were 15 males and 35 females. Mean age was 30 years (range 16-61 years). Treatment cost for pulmonary MDR-TB averaged $5723 while it averaged $8401 for pulmonary XDR-TB and $5609 for EPTB. The major expense was due to drug costs (37%) while consultation fees were only 5%. Annual individual income for the cohort ranged from $0 to $63,000 (mean $11,430). On average, the cost of treatment ranged from 2.56% to 180.34% of the annual family income. 34/50 (68%) had total costs greater than 20% of annual family income and 39/50 (78%) had total costs greater than 10% of annual family income. The number of patients with total costs >40% of total family income was 22. CONCLUSION: MDR-TB in the private sector results in "catastrophic health costs". Financial and social support is essential for patients undergoing treatment for MDR-TB.


Asunto(s)
Costo de Enfermedad , Tuberculosis Extensivamente Resistente a Drogas/economía , Gastos en Salud , Tuberculosis Pulmonar/economía , Adulto , Técnicas y Procedimientos Diagnósticos/economía , Costos de los Medicamentos , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Femenino , Hospitalización/economía , Humanos , India , Masculino , Centros de Atención Terciaria , Viaje/economía , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/economía , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/economía , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...