Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 110099, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947503

RESUMEN

Retinal ganglion cells (RGCs) summate inputs and forward a spike train code to the brain in the form of either maintained spiking (sustained) or a quickly decaying brief spike burst (transient). We report diverse response transience values across the RGC population and, contrary to the conventional transient/sustained scheme, responses with intermediary characteristics are the most abundant. Pharmacological tests showed that besides GABAergic inhibition, gap junction (GJ)-mediated excitation also plays a pivotal role in shaping response transience and thus visual coding. More precisely GJs connecting RGCs to nearby amacrine and RGCs play a defining role in the process. These GJs equalize kinetic features, including the response transience of transient OFF alpha (tOFFα) RGCs across a coupled array. We propose that GJs in other coupled neuron ensembles in the brain are also critical in the harmonization of response kinetics to enhance the population code and suit a corresponding task.

2.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269432

RESUMEN

Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.


Asunto(s)
Retina , Células Ganglionares de la Retina , Potenciales de Acción , Animales , Encéfalo , Mamíferos , Percepción Visual
3.
Neural Regen Res ; 16(10): 1911-1920, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642359

RESUMEN

Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.

4.
Front Pharmacol ; 12: 808315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095518

RESUMEN

The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.

5.
Cells ; 9(4)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218175

RESUMEN

The most prevalent Ca2+-buffer proteins (CaBPs: parvalbumin-PV; calbindin-CaB; calretinin-CaR) are widely expressed by various neurons throughout the brain, including the retinal ganglion cells (RGCs). Even though their retinal expression has been extensively studied, a coherent assessment of topographical variations is missing. To examine this, we performed immunohistochemistry (IHC) in mouse retinas. We found variability in the expression levels and cell numbers for CaR, with stronger and more numerous labels in the dorso-central area. CaBP+ cells contributed to RGCs with all soma sizes, indicating heterogeneity. We separated four to nine RGC clusters in each area based on expression levels and soma sizes. Besides the overall high variety in cluster number and size, the peripheral half of the temporal retina showed the greatest cluster number, indicating a better separation of RGC subtypes there. Multiple labels showed that 39% of the RGCs showed positivity for a single CaBP, 30% expressed two CaBPs, 25% showed no CaBP expression, and 6% expressed all three proteins. Finally, we observed an inverse relation between CaB and CaR expression levels in CaB/CaR dual- and CaB/CaR/PV triple-labeled RGCs, suggesting a mutual complementary function.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Análisis por Conglomerados , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Sci Rep ; 9(1): 15110, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641196

RESUMEN

In the visual system, retinal ganglion cells (RGCs) of various subtypes encode preprocessed photoreceptor signals into a spike output which is then transmitted towards the brain through parallel feature pathways. Spike timing determines how each feature signal contributes to the output of downstream neurons in visual brain centers, thereby influencing efficiency in visual perception. In this study, we demonstrate a marked population-wide variability in RGC response latency that is independent of trial-to-trial variability and recording approach. RGC response latencies to simple visual stimuli vary considerably in a heterogenous cell population but remain reliable when RGCs of a single subtype are compared. This subtype specificity, however, vanishes when the retinal circuitry is bypassed via direct RGC electrical stimulation. This suggests that latency is primarily determined by the signaling speed through retinal pathways that provide subtype specific inputs to RGCs. In addition, response latency is significantly altered when GABA inhibition or gap junction signaling is disturbed, which further supports the key role of retinal microcircuits in latency tuning. Finally, modulation of stimulus parameters affects individual RGC response delays considerably. Based on these findings, we hypothesize that retinal microcircuits fine-tune RGC response latency, which in turn determines the context-dependent weighing of each signal and its contribution to visual perception.


Asunto(s)
Tiempo de Reacción/fisiología , Retina/fisiología , Transducción de Señal , Animales , Señalización del Calcio/efectos de la radiación , Uniones Comunicantes/efectos de la radiación , Luz , Ratones Endogámicos C57BL , Inhibición Neural/efectos de la radiación , Estimulación Luminosa , Tiempo de Reacción/efectos de la radiación , Retina/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal/efectos de la radiación
7.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067641

RESUMEN

Ca2+-binding buffer proteins (CaBPs) are widely expressed by various neurons throughout the central nervous system (CNS), including the retina. While the expression of CaBPs by photoreceptors, retinal interneurons and the output ganglion cells in the mammalian retina has been extensively studied, a general description is still missing due to the differences between species, developmental expression patterns and study-to-study discrepancies. Furthermore, CaBPs are occasionally located in a compartment-specific manner and two or more CaBPs can be expressed by the same neuron, thereby sharing the labor of Ca2+ buffering in the intracellular milieu. This article reviews this topic by providing a framework on CaBP functional expression by neurons of the mammalian retina with an emphasis on human and mouse retinas and the three most abundant and extensively studied buffer proteins: parvalbumin, calretinin and calbindin.


Asunto(s)
Calbindinas/genética , Neuronas Retinianas/metabolismo , Animales , Calbindinas/metabolismo , Humanos , Ratones , Neuronas Retinianas/clasificación
8.
PLoS One ; 12(9): e0183436, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898257

RESUMEN

Retinal ganglion cells (RGC) have been described to react to light stimuli either by producing short bursts of spikes or by maintaining a longer, continuous train of action potentials. Fast, quickly decaying responses are considered to be transient in nature and encode information about movement and direction, while cell responses that show a slow, drawn-out response fall into the sustained category and are thought to be responsible for carrying information related to color and contrast. Multiple approaches have been introduced thus far to measure and determine response transiency. In this study, we adopted and slightly modified a method described by Zeck and Masland to characterize RGC response transiency values and compare them to those obtained by alternative methods. As the first step, RGC spike responses were elicited by light stimulation and peristimulus time histograms (PSTHs) were generated. PSTHs then were used to calculate the time constant (PSTHτ approach). We show that this method is comparable to or more reliable than alternative approaches to describe the temporal characteristics of RGC light responses. In addition, we also show that PSTHτ-s are compatible with time constants measured on RGC and/or bipolar cell graded potentials; thus they are suitable for studying signaling through parallel retinal pathways.


Asunto(s)
Potenciales de Acción , Células Ganglionares de la Retina/fisiología , Animales , Espacio Extracelular , Espacio Intracelular , Luz , Ratones , Estimulación Luminosa , Reproducibilidad de los Resultados , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal
9.
Front Cell Neurosci ; 11: 65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337128

RESUMEN

Much knowledge about interconnection of human retinal neurons is inferred from results on animal models. Likewise, there is a lack of information on human retinal electrical synapses/gap junctions (GJ). Connexin36 (Cx36) forms GJs in both the inner and outer plexiform layers (IPL and OPL) in most species including humans. However, a comparison of Cx36 GJ distribution in retinas of humans and popular animal models has not been presented. To this end a multiple-species comparison was performed in retinas of 12 mammals including humans to survey the Cx36 distribution. Areas of retinal specializations were avoided (e.g., fovea, visual streak, area centralis), thus observed Cx36 distribution differences were not attributed to these species-specific architecture of central retinal areas. Cx36 was expressed in both synaptic layers in all examined retinas. Cx36 plaques displayed an inhomogenous IPL distribution favoring the ON sublamina, however, this feature was more pronounced in the human, swine and guinea pig while it was less obvious in the rabbit, squirrel monkey, and ferret retinas. In contrast to the relative conservative Cx36 distribution in the IPL, the labels in the OPL varied considerably among mammals. In general, OPL plaques were rare and rather small in rod dominant carnivores and rodents, whereas the human and the cone rich guinea pig retinas displayed robust Cx36 labels. This survey presented that the human retina displayed two characteristic features, a pronounced ON dominance of Cx36 plaques in the IPL and prevalent Cx36 plaque conglomerates in the OPL. While many species showed either of these features, only the guinea pig retina shared both. The observed similarities and subtle differences in Cx36 plaque distribution across mammals do not correspond to evolutionary distances but may reflect accomodation to lifestyles of examined species.

10.
Drug Metab Pharmacokinet ; 30(6): 453-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26507668

RESUMEN

Taxanes are widely used microtubule-stabilizing chemotherapeutic agents in the treatment of cancers. Several cytochrome P450 gene variants have been proven to influence taxane metabolism and therapy. The purpose of this work was to determine the distribution of genetic variations of CYP1B1, CYP2C8 and CYP3A5 genes as the first report on taxane metabolizer cytochrome P450 gene polymorphisms in Roma and Hungarian populations. A total of 397 Roma and 412 Hungarian healthy subjects were genotyped for CYP1B1 c.4326C > G, CYP2C8 c.792C > G and CYP3A5 c.6986A > G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of CYP1B1 4326 GG (p = 0.002) and CYP3A5 6986 GG (p < 0.001) between Roma and Hungarian populations. Regarding minor allele frequencies, for CYP2C8 a significantly increased prevalence was found in 792G allele frequency in the Hungarian population compared to the Roma population (5.83% vs. 2.14%, p = 0.001). Our results can be used as possible predictive factors in population specific treatment algorithms to developing effective programs for a better outcome in patients treated with taxanes.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP3A/genética , Neoplasias/tratamiento farmacológico , Polimorfismo Genético , Romaní/genética , Taxoides/metabolismo , Moduladores de Tubulina/metabolismo , Población Blanca/genética , Adulto , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Femenino , Frecuencia de los Genes , Homocigoto , Humanos , Hungría , Masculino , Persona de Mediana Edad , Fenotipo , Taxoides/uso terapéutico , Moduladores de Tubulina/uso terapéutico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA