Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 63(10): 5526-5567, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32342685

RESUMEN

To identify novel D3 dopamine receptor (D3R) agonists, we conducted a high-throughput screen using a ß-arrestin recruitment assay. Counterscreening of the hit compounds provided an assessment of their selectivity, efficacy, and potency. The most promising scaffold was optimized through medicinal chemistry resulting in enhanced potency and selectivity. The optimized compound, ML417 (20), potently promotes D3R-mediated ß-arrestin translocation, G protein activation, and ERK1/2 phosphorylation (pERK) while lacking activity at other dopamine receptors. Screening of ML417 against multiple G protein-coupled receptors revealed exceptional global selectivity. Molecular modeling suggests that ML417 interacts with the D3R in a unique manner, possibly explaining its remarkable selectivity. ML417 was also found to protect against neurodegeneration of dopaminergic neurons derived from iPSCs. Together with promising pharmacokinetics and toxicology profiles, these results suggest that ML417 is a novel and uniquely selective D3R agonist that may serve as both a research tool and a therapeutic lead for the treatment of neuropsychiatric disorders.


Asunto(s)
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Descubrimiento de Drogas/métodos , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química , Animales , Células CHO , Cricetulus , Agonistas de Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Secundaria de Proteína , Receptores de Dopamina D3/metabolismo
2.
RSC Med Chem ; 11(8): 940-949, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479689

RESUMEN

Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVß3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVß3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVß3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVß3 and PAR2 has not yet been demonstrated.

3.
Bioorg Med Chem ; 27(17): 3788-3796, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31320211

RESUMEN

Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective, reversible, negative allosteric modulator of PAR1. In addition to inhibiting human platelet aggregation, it showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Oxazoles/farmacología , Receptor PAR-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Humanos , Ligandos , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Agregación Plaquetaria/efectos de los fármacos , Receptor PAR-1/metabolismo , Relación Estructura-Actividad
4.
Biophys J ; 117(2): 388-398, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31301804

RESUMEN

The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.


Asunto(s)
Glicerol/análogos & derivados , Glicerol/química , Micelas , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio de la Superfamilia Shaker/química , Secuencia de Aminoácidos , Dominios Proteicos , Estructura Secundaria de Proteína
5.
ACS Med Chem Lett ; 10(1): 121-126, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655958

RESUMEN

A novel class of bivalent ligands targeting putative protease-activated receptor (PAR) heteromers has been prepared based upon reported antagonists for the subtypes PAR1 and PAR2. Modified versions of the PAR1 antagonist RWJ-58259 containing alkyne adapters were connected via cycloaddition reactions to azide-capped polyethylene glycol (PEG) spacers attached to imidazopyridazine-based PAR2 antagonists. Initial studies of the PAR1-PAR2 antagonists indicated that they inhibited G alpha q-mediated calcium mobilization in endothelial and cancer cells driven by both PAR1 and PAR2 agonists. Compounds of this novel class hold promise for the prevention of restenosis, cancer cell metastasis, and other proliferative disorders.

6.
Bioorg Med Chem ; 26(9): 2514-2529, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29685684

RESUMEN

Several classes of ligands for Protease-Activated Receptors (PARs) have shown impressive anti-inflammatory and cytoprotective activities, including PAR2 antagonists and the PAR1-targeting parmodulins. In order to support medicinal chemistry studies with hundreds of compounds and to perform detailed mode-of-action studies, it became important to develop a reliable PAR assay that is operational with endothelial cells, which mediate the cytoprotective effects of interest. We report a detailed protocol for an intracellular calcium mobilization assay with adherent endothelial cells in multiwell plates that was used to study a number of known and new PAR1 and PAR2 ligands, including an alkynylated version of the PAR1 antagonist RWJ-58259 that is suitable for the preparation of tagged or conjugate compounds. Using the cell line EA.hy926, it was necessary to perform media exchanges with automated liquid handling equipment in order to obtain optimal and reproducible antagonist concentration-response curves. The assay is also suitable for study of PAR2 ligands; a peptide antagonist reported by Fairlie was synthesized and found to inhibit PAR2 in a manner consistent with reports using epithelial cells. The assay was used to confirm that vorapaxar acts as an irreversible antagonist of PAR1 in endothelium, and parmodulin 2 (ML161) and the related parmodulin RR-90 were found to inhibit PAR1 reversibly, in a manner consistent with negative allosteric modulation.


Asunto(s)
Benzamidas/farmacología , Calcio/metabolismo , Fenilendiaminas/farmacología , Receptor PAR-1/antagonistas & inhibidores , Receptor PAR-2/antagonistas & inhibidores , Tecnología Farmacéutica/métodos , Regulación Alostérica , Benzamidas/síntesis química , Línea Celular , Células Endoteliales/metabolismo , Humanos , Iminas/farmacología , Indazoles/síntesis química , Indazoles/farmacología , Lactonas/farmacología , Ligandos , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Fenilendiaminas/síntesis química , Piridinas/farmacología , Receptor PAR-1/agonistas , Receptor PAR-2/agonistas , Urea/análogos & derivados , Urea/síntesis química , Urea/farmacología
7.
Biochemistry ; 57(18): 2733-2743, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29616558

RESUMEN

Drugs do not act solely by canonical ligand-receptor binding interactions. Amphiphilic drugs partition into membranes, thereby perturbing bulk lipid bilayer properties and possibly altering the function of membrane proteins. Distinguishing membrane perturbation from more direct protein-ligand interactions is an ongoing challenge in chemical biology. Herein, we present one strategy for doing so, using dimeric 6-bromo-2-mercaptotryptamine (BrMT) and synthetic analogues. BrMT is a chemically unstable marine snail toxin that has unique effects on voltage-gated K+ channel proteins, making it an attractive medicinal chemistry lead. BrMT is amphiphilic and perturbs lipid bilayers, raising the question of whether its action against K+ channels is merely a manifestation of membrane perturbation. To determine whether medicinal chemistry approaches to improve BrMT might be viable, we synthesized BrMT and 11 analogues and determined their activities in parallel assays measuring K+ channel activity and lipid bilayer properties. Structure-activity relationships were determined for modulation of the Kv1.4 channel, bilayer partitioning, and bilayer perturbation. Neither membrane partitioning nor bilayer perturbation correlates with K+ channel modulation. We conclude that BrMT's membrane interactions are not critical for its inhibition of Kv1.4 activation. Further, we found that alkyl or ether linkages can replace the chemically labile disulfide bond in the BrMT pharmacophore, and we identified additional regions of the scaffold that are amenable to chemical modification. Our work demonstrates a strategy for determining if drugs act by specific interactions or bilayer-dependent mechanisms, and chemically stable modulators of Kv1 channels are reported.


Asunto(s)
Canal de Potasio Kv1.4/química , Membrana Dobles de Lípidos/química , Caracoles/química , Triptaminas/química , Secuencia de Aminoácidos , Animales , Humanos , Ligandos , Unión Proteica , Relación Estructura-Actividad , Xenopus laevis
8.
Nucleic Acids Res ; 45(16): 9413-9426, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934470

RESUMEN

An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance.


Asunto(s)
Recombinación Homóloga , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Azidas/química , ADN de Cadena Simple/metabolismo , Colorantes Fluorescentes/química , Microscopía Fluorescente , Fenilalanina/análogos & derivados , Fenilalanina/química , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética , Proteínas de Saccharomyces cerevisiae/genética , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...