Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2403156, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874058

RESUMEN

Energy-efficient glass windows are pivotal in modern infrastructure striving toward the "Zero energy" concept. Electrochromic (EC) energy storage devices emerge as a promising alternative to conventional glass, yet their widespread commercialization is impeded by high costs and dependence on external power sources. Addressing this, redox potential-based self-powered electrochromic (RP-SPEC) devices are introduced leveraging established EC materials like tungsten oxide (WO3) and vanadium-doped nickel oxide (V-NiO) along with aluminum (Al) as an anode. These devices produce open circuit voltages (OCV) exceeding ±0.3 V, enabling autonomous operation for multiple cycles. The WO3 film exhibits 1% transmission and 88% modulation in the colored state at 550 nm with a mere 260 nm thickness. The redox interactions facilitate coloring and bleaching cycles without external power, while photo-charging rejuvenates the system. Notably, the inherent voltages of the RP-SPEC device offer dual functionality, powering electronic devices for up to 81 h. Large-area (≈28 cm2) device feasibility is demonstrated, paving the way for industrial adoption. The RP-SPEC device promises to revolutionize smart window technology by offering both energy efficiency and autonomous operation, thus advancing sustainable infrastructure.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38048181

RESUMEN

Electrochromic windows have gained growing interest for their ability to change their optical state in the visible and NIR ranges with minimal input power, making them energy-efficient. However, material processing costs, fabrication complexity, and poor electrochromic properties can be barriers to the widespread adoption of this technology. To address these issues, electrochromic material and fabrication processes are designed to realize their potential as a cost-effective and energy-efficient technology. In this work, an electrochromic composite material-based ink is synthesized consisting of WO3·H2O nanoplates supported on rGO (reduced graphene oxide) nanosheets (WH-rGO), wherein an optimized amount of rGO (0.05 to 0.5 wt %) is introduced for providing a higher conduction pathway for efficient charge transport without sacrificing the electrochromic performance of WO3·H2O nanoplates. The stable ink dispersion prepared in the study is deposited by spray coating on transparent conducting electrodes over large areas (25 cm2). The WH-rGO nanocomposite (0.4 wt %) results in 43% optical modulation at 700 nm, with bleaching and coloration times of 6 and 8 s, respectively. Interestingly, the device also possesses an electrochemical energy storage capability with an areal capacitance of 16.3 mF/cm2. The electrochromic composite material is successfully translated on tin doped indium oxide (ITO)-coated Al metal mesh hybrid electrodes (T = 80%, Rs = 40 Ω/□) to replace ITO. Finally, an electrochromic device of 5 × 5 cm2 is fabricated by spray-coating the ink on cost-effective ITO/Al-mesh hybrid electrodes. The device displays blue to colorless modulation with an excellent bleaching time of 0.43 s and a coloration time of 2.16 s, making it one among the fast-operating devices fabricated by complete solution processing. This work showcases the economical production of a dual-function electrochromic device, which can be a feasible option as an alternative to existing ITO-based devices in both automotive and infrastructure applications.

3.
ACS Appl Mater Interfaces ; 15(15): 19111-19120, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37016773

RESUMEN

Electrochromic (EC) devices are not commercialized extensively owing to their high cost. The best large-area devices in the market suffer from not reaching a distinct dark-colored state. These devices appear more like a blue tinted glass. While a better performance demands the use of appropriate components, the cost-effectiveness of such components is crucial for commercialization. Specifically, the utilization of cost-effective electrodes, thin WO3 coatings, and inexpensive electrolytes are essential for reducing the cost of EC devices. Here, we report a high-performing porous WO3 thin film (∼130 nm) achieved by optimizing the DC sputtering process parameters. This way, an affordable dual-function EC energy-storage device was fabricated, showing 84% transmittance modulation and a high power density of 3036 mW/m2, thus functioning simultaneously as a transparency switching energy-storage device. With a large-area (900 cm2) device, we have demonstrated that the need for expensive ITO electrodes and Li+ ion-based electrolytes can be eliminated by using a hybrid electrode (ITO/Al-mesh) and multivalent Al3+ ion-based electrolytes while not compromising the device performance. The findings of this study may revolutionize the EC device industry and their commercialization owing to inexpensive ingredients and scalable processing.

4.
ACS Appl Mater Interfaces ; 15(2): 3613-3620, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36606698

RESUMEN

Implementing simple and inexpensive energy-saving smart technologies in households is quite effective to accomplish on-demand privacy control and reduction in energy consumption. Conventional smart glasses face difficulty in making inroads into the consumer market due to utilizing expensive active layers, electrolytes, and transparent electrodes. Thus, the need of the hour is to develop an unconventional smart window, which should be cost-effective, power-efficient, and simple to fabricate. Against this backdrop, we report the fabrication of a new class of smart partition windows termed "mist-driven transparency switching glass". The fabrication protocol includes surface energy modification of two glass panes, followed by assembling them into a square or rectangular-shaped narrow cell with appropriate inlets and outlets for mist. In its pristine state, the device is transparent, as expected of two plain glasses forming a cell. Insertion of cool mist into the device produces tiny droplets onto the inner walls due to condensation enabling scattering of light, thereby producing the translucent state. The optimized device shows a transmittance modulation of as much as ∼65% at 550 nm, allowing it to reduce the indoor temperature by more than 30% compared to a regular glass windowpane. To realize commercial viability, a large area device (30 × 30 cm2) was fabricated, which could be operated wirelessly through a cellphone application paving the way for incorporating the Internet of Things into the technology.

5.
J Colloid Interface Sci ; 621: 110-118, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35452925

RESUMEN

A novel one-step method for fabricating vanadium telluride nanobelt composites for high-performance supercapacitor applications is reported. The nanobelts are realized by direct tellurization of vanadium oxide in-situ formed via decomposition of ammonium metavanadate in argon atmosphere. Use of melamine as precursor helps in forming graphitic carbon layers during pyrolization on which the nanobelts are grafted. Morphological analysis suggests interconnected nanobelts of ∼23.0 nm width coming out of carbon structure. As pseudocapacitive electrode, vanadium telluride/carbon (C) composite exhibits interesting electrochemical performance within a potential window of 0-1.0 V in 1.0 M sodium sulfate electrolyte along with excellent capacitance retention during 5000 cycles. In-depth analysis suggests that the charge storage mechanism in the composite is governed by both diffusion-controlled and diffusion-independent processes with the former dominating at slower scan rates and later at faster scan rates. The asymmetric supercapacitor assembled using vanadium telluride/C and activated charcoal (AC) as respective positive and negative electrodes exhibited an energy/power combination of 19.3 Wh/kg and 1.8 kW/kg within a potential window of 0-1.8 V in aqueous electrolyte. This strategy to improve capacitance along with potential window in an aqueous electrolyte would facilitate development of high-performance energy storage devices with metal chalcogenides.

6.
ACS Appl Mater Interfaces ; 12(48): 54203-54211, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33206506

RESUMEN

Fabrication protocols of transparent conducting electrodes (TCEs), including those which produce TCEs of high values of figure of merit, often fail to address issues of scalability, stability, and cost. When it comes to working with high-temperature stable electrodes, one is left with only one and that too, an expensive choice, namely, fluorine-doped SnO2 (FTO). It is rather difficult to replace FTO with a low-cost TCE due to stability issues. In the present work, we have shown that an Al nanomesh fabricated employing the crack template method exhibits extreme thermal stability in air even at 500 °C, compared with that of FTO. In order to fill in the non-conducting island regions present in between the mesh wires, a moderately conducting material SnO2 layer was found adequate. The innovative step employed in the present work relates to the SnO2 deposition without damaging the underneath Al, which is a challenge in itself, as the commonly used precursor, SnCl2 solution, is quite corrosive toward Al. Optimization of spray coating of the precursor while the Al mesh on a glass substrate held at an appropriate temperature was the key to form a stable hybrid electrode. The resulting Al/SnO2 electrode exhibited an excellent transparency of ∼83% at 550 nm and a low sheet resistance of 5.5 Ω/□. SnO2 coating additionally made the TCE scratch-proof and mechanically stable, as the adhesion tape test showed only 8% change in sheet resistance after 1000 cycles. Further, to give FTO-like surface finish, the SnO2 surface was fluorinated by treating with a Selectfluor solution. As a result, the Al/F-SnO2 hybrid film exhibited one order higher surface conductivity with negligible sensitivity toward humidity and volatile organics, while becoming robust toward neutral electrochemical environments. Finally, a custom-designed projection lithography technique was used to pixelate the Al/SnO2 hybrid film for optoelectronic device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...