Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Med Phys ; 51(5): 3245-3264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38573172

RESUMEN

BACKGROUND: Cone-beam CT (CBCT) with non-circular scanning orbits can improve image quality for 3D intraoperative image guidance. However, geometric calibration of such scans can be challenging. Existing methods typically require a prior image, specialized phantoms, presumed repeatable orbits, or long computation time. PURPOSE: We propose a novel fully automatic online geometric calibration algorithm that does not require prior knowledge of fiducial configuration. The algorithm is fast, accurate, and can accommodate arbitrary scanning orbits and fiducial configurations. METHODS: The algorithm uses an automatic initialization process to eliminate human intervention in fiducial localization and an iterative refinement process to ensure robustness and accuracy. We provide a detailed explanation and implementation of the proposed algorithm. Physical experiments on a lab test bench and a clinical robotic C-arm scanner were conducted to evaluate spatial resolution performance and robustness under realistic constraints. RESULTS: Qualitative and quantitative results from the physical experiments demonstrate high accuracy, efficiency, and robustness of the proposed method. The spatial resolution performance matched that of our existing benchmark method, which used a 3D-2D registration-based geometric calibration algorithm. CONCLUSIONS: We have demonstrated an automatic online geometric calibration method that delivers high spatial resolution and robustness performance. This methodology enables arbitrary scan trajectories and should facilitate translation of such acquisition methods in a clinical setting.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Calibración , Fantasmas de Imagen , Automatización , Humanos , Marcadores Fiduciales , Imagenología Tridimensional/métodos
2.
Phys Med Biol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604190

RESUMEN

Objective Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels. Method The lung phantom used in this study is based on a patient chest CT scan containing ground glass opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two different size extension rings to mimic a small- and medium-sized patient and was scanned on a conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, contrast to noise ratio (CNR), root mean squared error (RMSE), structural similarity index (SSIM), and multi-scale SSIM (MS SSIM) were calculated for each image. Results DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was estimated to reduce dose by 25-83% in the small phantom and by 50-83% in the medium phantom without decreasing image quality for any of the metrics measured in this study. These dose reduction estimates are more conservative compared to the estimates obtained when only considering noise and CNR. Conclusion DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose, which can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom used in this study offers an improved testing environment with more realistic tissue structures compared to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and contrast-based assessments.

3.
medRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106064

RESUMEN

Objective: Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels. Approach: The lung phantom used in this study is based on a patient chest CT scan containing ground glass opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two different sized extension rings to mimic a small and medium sized patient and was scanned on a conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, contrast to noise ratio (CNR), root mean squared error (RMSE), structural similarity index (SSIM), and multi-scale SSIM (MS SSIM) were calculated for each image. Main Results: DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was estimated to reduce dose by 25-83% in the small phantom and by 50-83% in the medium phantom without decreasing image quality for any of the metrics measured in this study. These dose reduction estimates are more conservative compared to the estimates obtained when only considering noise and CNR with a non-anatomical physics phantom. Significance: DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose which can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom used in this study offers an improved testing environment with more realistic tissue structures compared to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and contrast-based assessments.

5.
Sci Rep ; 13(1): 17495, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840044

RESUMEN

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that possess accurate densities and exhibit visually realistic image textures. These qualities are crucial for evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized calcium-doped filament to increase the Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility, and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in visual texture and contrast. Micro-CT analysis revealed minimal variations between prints, with an overall deviation of ± 0.8% in filament line spacing and ± 0.022 mm in line width. Measured differences between patient and phantom were less than 12 HU for soft tissue and 15 HU for bone marrow, and 514 HU for cortical bone. The calcium-doped filament accurately represented bony tissue structures across different X-ray energies in spectral CT (RMSE ranging from ± 3 to ± 28 HU, compared to 400 mg/ml hydroxyapatite). In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.


Asunto(s)
Calcio , Tomografía Computarizada por Rayos X , Humanos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Vértebras Cervicales , Impresión Tridimensional
6.
Artículo en Inglés | MEDLINE | ID: mdl-37854298

RESUMEN

Digital subtraction angiography (DSA) is a widely used technique for the visualization of contrast-enhanced structures. However, temporal subtraction DSA is challenged by misregistration artifacts due to patient motion and incomplete separation of iodine contrast agent from background soft tissue and bone. In this work, we propose an approach that allows three-material decomposition using a dual-layer flat panel detector in the presence of soft tissue motion. We assume the calcium signal (bone) remains stationary in the pre- and post-contrast images but allow soft tissues to move freely (e.g. cardiac motion). The dual-layer pre- and post-injection images form and ensemble of four measurements that permits material decomposition of four bases (pre- and post-injection soft tissue, calcium, and iodine). We apply two different processing techniques: 1) a modified lookup table and; 2) a model-based material estimation. These are compared with previously proposed DSA methods using temporal subtraction and hybrid (dual-energy) subtraction. Investigations were performed using an XCAT thorax phantom simulating a breath-hold. The pre- and post-contrast measurements were simulated at different time points within a cardiac cycle. Both the lookup table and model-based algorithms eliminate motion artifact as a result of soft tissue motion and allow good separation of iodine, bone, and soft tissue. While the lookup table algorithm contains high noise at the simulated dose level, the model-based algorithm produced iodine images that allow the visualization of major vessels around the heart. In contrast, traditional temporal DSA is susceptible to subtraction artifacts and hybrid DSA shows increased noise.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37854299

RESUMEN

Imaging is often a first-line method for diagnostics and treatment. Radiological workflows increasingly mine medical images for quantifiable features. Variability in device/vendor, acquisition protocol, data processing, etc., can dramatically affect quantitative measures, including radiomics. We recently developed a method (PixelPrint) for 3D-printing lifelike computed tomography (CT) lung phantoms, paving the way for future diagnostic imaging standardization. PixelPrint generates phantoms with accurate attenuation profiles and textures by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. The present study introduces a library of 3D printed lung phantoms covering a wide range of lung diseases, including usual interstitial pneumonia with advanced fibrosis, chronic hypersensitivity pneumonitis, secondary tuberculosis, cystic fibrosis, Kaposi sarcoma, and pulmonary edema. CT images of the patient-based phantom are qualitatively comparable to original CT images, both in texture, resolution and contrast levels allowing for clear visualization of even subtle imaging abnormalities. The variety of cases chosen for printing include both benign and malignant pathology causing a variety of alveolar and advanced interstitial abnormalities, both clearly visualized on the phantoms. A comparison of regions of interest revealed differences in attenuation below 6 HU. Identical features on the patient and the phantom have a high degree of geometrical correlation, with differences smaller than the intrinsic spatial resolution of the scans. Using PixelPrint, it is possible to generate CT phantoms that accurately represent different pulmonary diseases and their characteristic imaging features.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37854300

RESUMEN

X-ray spectral imaging has been increasingly investigated in radiography and interventional imaging. Flat-panel detectors with more than one detection layer have demonstrated advantages in providing separate soft tissue and bone images. Current dual-layer flat-panel detectors (DL-FPD) have limited capability to further differentiate between iodinated contrast agent and bony/calcified structures. In this work, we investigate a triple-layer flat-panel detector (TL-FPD) and the feasibility of three-material (water/calcium/iodine) decomposition. A physical model of TL-FPD, including system geometry, spectrum sensitivities, blur and noise models was developed. Using simulated triple-layer projections, three-material decompositions were performed using three different processing methods: polynomial-based, model-based, and a machine learning-based method (ResUnet). We find that the polynomial-based method leads to very noisy images with poor differentiation between calcium and iodine maps. The model-based method achieved much lower noise levels than the polynomial-based method but exhibited residual errors between the iodine and calcium channels. The ResUnet method offered the best decompositions among the investigated methods in terms of root mean square error from the ground truth and noise in the material maps. These preliminary results demonstrate the feasibility of three-material decomposition using TL-FPD and suggest a path for clinical translation of single-shot contrast/iodine differentiation in radiography and fluoroscopy.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37854472

RESUMEN

As the expansion of Cone Beam CT (CBCT) to new interventional procedures continues, the burdensome challenge of metal artifacts remains. Photon starvation and beam hardening from metallic implants and surgical tools in the field of view can result in the anatomy of interest being partially or fully obscured by imaging artifacts. Leveraging the flexibility of modern robotic CBCT imaging systems, implementing non-circular orbits designed for reducing metal artifacts by ensuring data-completeness during acquisition has become a reality. Here, we investigate using non-circular orbits to reduce metal artifacts arising from metallic hip prostheses when imaging pelvic anatomy. As a first proof-of-concept, we implement a sinusoidal and a double-circle-arc orbit on a CBCT test bench, imaging a physical pelvis phantom, with two metal hip prostheses, housing a 3D-printed iodine-filled radial line-pair target. A standard circular orbit implemented with the CBCT test bench acted as comparator. Imaging data collection and processing, geometric calibration and image reconstruction was completed using in-house developed software programs. Imaging with the standard circular orbit, image artifacts were observed in the pelvic bones and only 33 out of the possible 45 line-pairs of the radial line-pair target were partially resolvable in the reconstructed images. Comparatively, imaging with both the sinusoid and double-circle-arc orbits reduced artifacts in the surrounding anatomy and enabled all 45 line-pairs to be visibly resolved in the reconstructed images. These results indicate the potential of non-circular orbits to assist in revealing previously obstructed structures in the pelvic region in the presence of metal hip prosthesis.

10.
Sci Rep ; 13(1): 14895, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689744

RESUMEN

We evaluate stability of spectral results at different heart rates, acquisition modes, and cardiac phases in first-generation clinical dual-source photon-counting CT (PCCT). A cardiac motion simulator with a coronary stenosis mimicking a 50% eccentric calcium plaque was scanned at five different heart rates (0, 60-100 bpm) with the three available cardiac scan modes (high pitch prospectively ECG-triggered spiral, prospectively ECG-triggered axial, retrospectively ECG-gated spiral). Subsequently, full width half max (FWHM) of the stenosis, Dice score (DSC) for the stenosed region, and eccentricity of the non-stenosed region were calculated for virtual monoenergetic images (VMI) at 50, 70, and 150 keV and iodine density maps at both diastole and systole. FWHM averaged differences of - 0.20, - 0.28, and - 0.15 mm relative to static FWHM at VMI 150 keV across acquisition parameters for high pitch prospectively ECG-triggered spiral, prospectively ECG-triggered axial, and retrospectively ECG-gated spiral scans, respectively. Additionally, there was no effect of heart rate and acquisition mode on FWHM at diastole (p-values < 0.001). DSC demonstrated similarity among parameters with standard deviations of 0.08, 0.09, 0.11, and 0.08 for VMI 50, 70, and 150 keV, and iodine density maps, respectively, with insignificant differences at diastole (p-values < 0.01). Similarly, eccentricity illustrated small differences across heart rate and acquisition mode for each spectral result. Consistency of spectral results at different heart rates and acquisition modes for different cardiac phase demonstrates the added benefit of spectral results from PCCT to dual-source CT to further increase confidence in quantification and advance cardiovascular diagnostics.


Asunto(s)
Estenosis Coronaria , Yodo , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Corazón/diagnóstico por imagen , Constricción Patológica
11.
J Med Imaging (Bellingham) ; 10(3): 033501, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37151806

RESUMEN

Optimization of CT image quality typically involves balancing variance and bias. In traditional filtered back-projection, this trade-off is controlled by the filter cutoff frequency. In model-based iterative reconstruction, the regularization strength parameter often serves the same function. Deep neural networks (DNNs) typically do not provide this tunable control over output image properties. Models are often trained to minimize the expected mean squared error, which penalizes both variance and bias in image outputs but does not offer any control over the trade-off between the two. We propose a method for controlling the output image properties of neural networks with a new loss function called weighted covariance and bias (WCB). Our proposed method uses multiple noise realizations of the input images during training to allow for separate weighting matrices for the variance and bias penalty terms. Moreover, we show that tuning these weights enables targeted penalization of specific image features with spatial frequency domain penalties. To evaluate our method, we present a simulation study using digital anthropomorphic phantoms, physical simulation of CT measurements, and image formation with various algorithms. We show that the WCB loss function offers a greater degree of control over trade-offs between variance and bias, whereas mean-squared error provides only one specific image quality configuration. We also show that WCB can be used to control specific image properties including variance, bias, spatial resolution, and the noise correlation of neural network outputs. Finally, we present a method to optimize the proposed weights for a spiculated lung nodule shape discrimination task. Our results demonstrate this new image quality can control the image properties of DNN outputs and optimize image quality for task-specific performance.

12.
Res Sq ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162901

RESUMEN

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

13.
medRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162973

RESUMEN

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

14.
PNAS Nexus ; 2(3): pgad026, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909822

RESUMEN

In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03-0.29, using a 1-5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint's production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38170078

RESUMEN

Restoration of images contaminated by blur is an important processing tool across modalities including computed tomography where the blur induced by various system factors can be complex with dependencies on acquisition and reconstruction protocol, and even be patient-dependent. In many cases, such a blur can be modeled and predicted with high accuracy providing an important input to a classical deconvolution approach. While traditional deblurring methods tend to be highly noise magnifying, deep learning approaches have the potential to improve upon classic performance limits. However, most network architectures base their restoration on data inputs alone without knowledge of the system blur. In this work, we explore a deep learning approach that takes both image inputs as well as information that characterizes the system blur to combine modeling and deep learning approaches. We apply the approach to CT image restoration and compare with an image-only deep learning approach. We find that inclusion of the system blur model improves deblurring performance - suggesting the potential power of the combined modeling and deep learning technique.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36320561

RESUMEN

The rapid development of deep-learning methods in medical imaging has called for an analysis method suitable for non-linear and data-dependent algorithms. In this work, we investigate a local linearity analysis where a complex neural network can be represented as piecewise linear systems. We recognize that a large number of neural networks consists of alternating linear layers and rectified linear unit (ReLU) activations, and are therefore strictly piecewise linear. We investigated the extent of these locally linear regions by gradually adding perturbations to an operating point. For this work, we explored perturbations based on image features of interest, including lesion contrast, background, and additive noise. We then developed strategies to extend these strictly locally linear regions to include neighboring linear regions with similar gradients. Using these approximately linear regions, we applied singular value decomposition (SVD) analysis to each local linear system to investigate and explain the overall nonlinear and data-dependent behaviors of neural networks. The analysis was applied to an example CT denoising algorithm trained on thorax CT scans. We observed that the strictly local linear regions are highly sensitive to small signal perturbations. Over a range of lesion contrast from 0.007 to 0.04 mm-1, there is a total of 33992 linear regions. The Jacobians are also shift-variant. However, the Jacobians of neighboring linear regions are very similar. By combining linear regions with similar Jacobians, we narrowed down the number of approximately linear regions to four over lesion contrast from 0.001 to 0.08 mm-1. The SVD analysis to different linear regions revealed denoising behavior that is highly dependent on the background intensity. Analysis further identified greater amount of noise reduction in uniform regions compared to lesion edges. In summary, the local linearity analysis framework we proposed has the potential for us to better characterize and interpret the non-linear and data-dependent behaviors of neural networks.

17.
Artículo en Inglés | MEDLINE | ID: mdl-35664728

RESUMEN

Phantoms are essential tools for assessing and verifying performance in computed tomography (CT). Realistic patient-based lung phantoms that accurately represent textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D-printing solution to create patient-specific lung phantoms with accurate contrast and textures. PixelPrint converts patient images directly into printer instructions, where density is modeled as the ratio of filament to voxel volume to emulate local attenuation values. For evaluation of PixelPrint, phantoms based on four COVID-19 pneumonia patients were manufactured and scanned with the original (clinical) CT scanners and protocols. Density and geometrical accuracies between phantom and patient images were evaluated for various anatomical features in the lung, and a radiomic feature comparison was performed for mild, moderate, and severe COVID-19 pneumonia patient-based phantoms. Qualitatively, CT images of the patient-based phantoms closely resemble the original CT images, both in texture and contrast levels, with clearly visible vascular and parenchymal structures. Regions-of-interest (ROIs) comparing attenuation demonstrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist revealed a high degree of geometrical correlation between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the images. Radiomic feature analysis revealed high correspondence, with correlations of 0.95-0.99 between patient and phantom images. Our study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate geometry, texture, and contrast that will enable protocol optimization, CT research and development advancements, and generation of ground-truth datasets for radiomic evaluations.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35601024

RESUMEN

Recent years have seen the increasing application of deep learning methods in medical imaging formation, processing, and analysis. These methods take advantage of the flexibility of nonlinear neural network models to encode information and features in ways that can outperform conventional approaches. However, because of the nonlinear nature of this processing, images formed by neural networks have properties that are highly data-dependent and difficult to analyze. In particular, the generalizability and robustness of these approaches can be difficult to ascertain. In this work, we analyze a class of neural networks that use only piece-wise linear activation functions. This class of networks can be represented by locally linear systems where the linear properties are highly data-dependent - allowing, for example, estimation of noise in image output via standard propagation methods. We propose a nonlinearity index metric that quantifies the fidelity of a local linear approximation of trained models based on specific input data. We applied this analysis to three example CT denoising CNNs to analytically predict the noise properties in the output images. We found that the proposed nonlinearity metric highly correlates with the accuracy of noise predictions. The analysis proposed in this work provides theoretical understanding of the nonlinear behavior of neural networks and enables performance prediction and quantitation under certain conditions.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35601023

RESUMEN

Cone-beam CT (CBCT) with non-circular acquisition orbits has the potential to improve image quality, increase the field-of view, and facilitate minimal interference within an interventional imaging setting. Because time is of the essence in interventional imaging scenarios, rapid reconstruction methods are advantageous. Model-Based Iterative Reconstruction (MBIR) techniques implicitly handle arbitrary geometries; however, the computational burden for these approaches is particularly high. The aim of this work is to extend a previously proposed framework for fast reconstruction of non-circular CBCT trajectories. The pipeline combines a deconvolution operation on the backprojected measurements using an approximate, shift-invariant system response prior to processing with a Convolutional Neural Network (CNN). We trained and evaluated the CNN for this approach using 1800 randomized arbitrary orbits. Noisy projection data were formed from 1000 procedurally generated tetrahedral phantoms as well as anthropomorphic data in the form of 800 CT and CBCT images from the Lung Image Database Consortium Image Collection (LIDC). Using this proposed reconstruction pipeline, computation time was reduced by 90% as compared to MBIR with only minor differences in performance. Quantitative comparisons of nRMSE, FSIM and SSIM are reported. Performance was consistent for projection data simulated with acquisition orbits the network has not previously been trained on. These results suggest the potential for fast processing of arbitrary CBCT trajectory data with reconstruction times that are clinically relevant and applicable - facilitating the application of non-circular orbits in CT image-guided interventions and intraoperative imaging.

20.
Artículo en Inglés | MEDLINE | ID: mdl-35585939

RESUMEN

The proliferation of deep learning image processing calls for a quantitative image quality assessment framework that is suitable for nonlinear, data-dependent algorithms. In this work, we propose a method to systematically evaluate the system and noise responses such that the nonlinear transfer properties can be mapped out. The method involves sampling of lesion perturbations as a function of size, contrast, as well as clinically relevant features such as shape and texture that may be important for diagnosis. We embed the perturbations in backgrounds of varying attenuation levels, noise magnitude and correlation that are associated with different patient anatomies and imaging protocols. The range of system and noise response are further used to evaluate performance for clinical tasks such as signal detection and classification. We performed the assessment for an example CNN-denoising algorithm for low does lung CT screening. The system response of the CNN-denoising algorithm exhibits highly nonlinear behavior where both contrast and higher order lesion features such as spiculated boundaries are not reliably represented for lesions perturbations with small size and low contrast. The noise properties are potentially highly nonstationary, and should be assumed to be the same between the signal-present and signal-absent images. Furthermore, we observer a high degree dependency of both system and noise response on the background attenuation levels. Inputs around zeros are effectively imposed a non-negativity constraint; transfer properties for higher background levels are highly variable. For a detection task, CNN-denoised images improved detectability index by 16-18% compared to low dose CT inputs. For classification task between spiculated and smooth lesions, CNN-denoised images result in a much larger improvement up to 50%. The performance assessment framework propose in this work can systematically map out the nonlinear transfer functions for deep learning algorithms and can potentially enable robust deployment of such algorithms in medical imaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...