Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(38): 28086-28097, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39228763

RESUMEN

Formation of highly crystalline zinc oxide (ZnO) nanowires with an extremely high aspect ratio (length = 60 µm, diameter = 50 nm) is routinely achieved by introducing an intermediate step-oxidation method during the thermal oxidation process of thin zinc (Zn) films. High-purity Zn was deposited onto clean glass substrates at room temperature using a vacuum-assisted thermal evaporation technique. Afterwards, the as-deposited Zn layers were thermally oxidized under a closed air ambient condition at different temperatures and durations. Structural, morphological, chemical, optical and electrical properties of these oxide layers were investigated using various surface characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoemission spectroscopy (XPS). It was noticed that the initial thermal oxidation of Zn films usually starts above 400 °C. Homogeneous and lateral growth of the ZnO layer is usually preferred for oxidation at a lower temperature below 500 °C. One-dimensional (1D) asymmetric growth of ZnO started to dominate thermal oxidation above 600 °C. Highly dense 1D ZnO nanowires were specifically observed after prolonged oxidation at 600 °C for 5 hours, followed by short-step oxidation at 700 °C for 30 minutes. However, direct oxidation of Zn films at 700 °C resulted in ZnO nanorod formation. The formation of ZnO nanowires using step-oxidation is explained in terms of surface free energy and compressive stress-driven Zn adatom kinetics through the grain boundaries of laterally grown ZnO seed layers. This simple thermal oxidation process using intermittent step-oxidation was found to be quite unique and very much useful to routinely grow an array of high-density ZnO nanowires. Moreover, these ZnO nanowires showed very high sensitivity and selectivity towards formaldehyde vapour sensing against few other VOCs.

2.
ACS Omega ; 5(12): 6738-6753, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258909

RESUMEN

The present study demonstrates how the different states of solubilized water viz. quaternary ammonium headgroup-bound, bulklike, counterion-bound, and free water in reverse micelles of a series of cationic gemini surfactants, water/12-s-12 (s = 5, 6, 8).2Br-/n-propanol/cyclohexane, control the solvation dynamics and rotational relaxation of Coumarin 490 (C-490) and microenvironment of the reverse micelles. The relative number of solubilized water molecules of a given state per surfactant molecule decides major and minor components. A rapid increase in the number of bulklike water molecules per surfactant molecule as compared to the slow increase in the number of each of headgroup- and counterion-bound water molecules per surfactant molecule with increasing water content (W o) in a given reverse micellar system is responsible for the increase in the rate of solvation and rotational relaxation of C-490. The increase in the number of counterion-bound water molecules per surfactant molecule and the concomitant decrease in the number of bulklike water molecules per surfactant molecule with increasing spacer chain length of gemini surfactants at a given W o are ascribed to the slower rates of both solvation and rotational relaxation. Relative abundances of different states of water have a role on the microenvironment of the reverse micelles as well. Thus, a comprehensive effect of different states of water on dynamics in complex biomimicking systems has been presented here.

3.
Int J Biol Macromol ; 132: 316-329, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30940582

RESUMEN

Detection of sugar by enzymatic assay has been suffering from costly, time-taking, instable and denaturation of glucose oxidase. Recently, chemosensors that have affinity towards boronate became the hot topic in the domain of monosaccharide detection. In this work, a novel strategy was addressed to fabricate carbon dots (C-dots) from linear sulfated polysaccharides κ- carrageenan and phenyl boronic acid for nonenzymatic monosaccharide (glucose) detection. The boronic acid group anchored C-dots surface can form assembly by covalently bonded with the cis-diol moiety of the glucose which caused fluorescence quenching of the C-dots. The inert surface nature of the luminescent C-dots enables them to sense as low as 1.7 µM glucose without the interference of other biomolecules. The proposed sensing system was successfully applied for assay of glucose in blood serum. Interestingly, these C-dots were used as a nano vehicle for delivery of anti-diabetic drug Metformin. Good biocompatibility results were found with MTT and hemolysis assay. Owing to its simplicity and effectiveness, the as-prepared C-dots offered great promise for blood sugar diagnosis and treatment.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos/química , Carbono/química , Carragenina/química , Liberación de Fármacos , Glucosa/análisis , Hipoglucemiantes/química , Materiales Biocompatibles/química , Conformación de Carbohidratos , Portadores de Fármacos/química , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Metformina/química , Modelos Moleculares , Puntos Cuánticos/química , Sulfatos/química
4.
Luminescence ; 33(6): 1136-1145, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30027666

RESUMEN

We report on metal-non-metal doped carbon dots with very high photoluminescent properties in solution. Magnesium doping to tamarind extract associated with nitrogen-doping is for the first time reported here which also produce very high quantum yield. Our aim is to develop such dual doped carbon dots which can also serve living cell imaging with easy permeation towards cells and show non-cytotoxic attributes. More importantly, the chemical signatures of the carbon dots unveiled in this work can support their easy solubilization into water; even in sub-ambient temperature. The cytotoxicity assay proves the almost negligible cytotoxic effect against human cell lines. Moreover, the use of carbon dots in UV-active marker and polymer composites are also performed which gave clear distinguishable features of fluorescent nanoparticles. Hitherto, the carbon dots can be commercially prepared without adopting any rigorous methods and also can be used as non-photo-bleachable biomarkers of living cells.


Asunto(s)
Materiales Biocompatibles/química , Carbono/química , Color , Sustancias Luminiscentes/química , Polímeros/química , Puntos Cuánticos/química , Línea Celular , Fluorescencia , Humanos , Rayos Ultravioleta
5.
Mater Sci Eng C Mater Biol Appl ; 88: 115-129, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29636126

RESUMEN

Carbon dots with heteroatom co-doping associated with consummate luminescence features are of acute interest in diverse applications such as biomolecule markers, chemical sensing, photovoltaic, and trace element detection. Herein, we demonstrate a straightforward, highly efficient hydrothermal dehydration technique to synthesize zinc and nitrogen co-doped multifunctional carbon dots (N, Zn-CDs) with superior quantum yield (50.8%). The luminescence property of the carbon dots can be tuned by regulating precursor ratio and surface oxidation states in the carbon dots. A unique attribution of the as-prepared carbon dots is the high monodispersity and robust excitation-independent emission behavior that is stable in enormously reactive environment and over a wide range of pH. These N, Zn-CDs unveils captivating bacteriostatic activity against gram-negative bacteria Escherichia coli. Furthermore, the excellent luminescence properties of these carbon dots were applied as a platform of sensitive biosensor for the detection of hydrogen peroxide. Under optimized conditions, these N, Zn-CDs reveals high sensitivity over a broad range of concentrations with an ultra-low limit of detection (LOD) indicating their pronounced prospective as a fluorescent probe for chemical sensing. Overall, the experimental outcomes propose that these zero-dimensional nano-dots could be developed as bacteriostatic agents to control and prevent the persistence and spreading of bacterial infections and as a fluorescent probe for hydrogen peroxide detection.


Asunto(s)
Antibacterianos/química , Técnicas Biosensibles/métodos , Escherichia coli/crecimiento & desarrollo , Peróxido de Hidrógeno/análisis , Nitrógeno/química , Puntos Cuánticos/química , Zinc/química
6.
Langmuir ; 33(13): 3178-3186, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28298086

RESUMEN

Different metal chalcogenides, being a potential candidate for hydrogen evolution catalysts, have attracted enormous attention in the field of water splitting. In the present study, Ag2S/Ag is revealed as an efficient catalyst for hydrogen evolution. When a sacrificial template of the CuS nanostructure is used, Ag2S/Ag heterostructures are synthesized following a simple wet-chemical technique. Two different routes, wet chemical and hydrothermal, are followed to modulate the morphology of the CuS templates from flower ball to wirelike structures, which subsequently results in the formation of Ag2S nanostructure. Finally, the Ag layer is deposited on Ag2S with the help of a photoreduction technique. The unique heterostructure of Ag2S/Ag shows efficient catalytic activity in the H2 evolution reaction. A Ag2S/Ag wire can successfully generate a 10 mA/cm2 current density at a -0.199 V potential. Ag2S/Ag contains the micronanostructure where nanoplates of Ag2S/Ag assemble to give rise to microstructures such as flower balls and wire.

7.
Langmuir ; 32(39): 10054-10064, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27610832

RESUMEN

In this study, we report the synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles (NPs) using graphitic carbon nitride (g-C3N4) quantum dots (QDs) and photochemical routes. Eliminating the necessity of any extra stabilizer or reducing agent, the photochemical reactions have been carried out using a UV light source of 365 nm where C3N4 QD itself functions as a suitable stabilizer as well as a reducing agent. The g-C3N4 QDs are excited upon irradiation with UV light and produce photogenerated electrons, which further facilitate the reduction of metal ions. The successful formation of Au, Pd, and AuPd alloy nanoparticles is evidenced by UV-vis, powder X-ray diffraction, X-ray photon spectroscopy, and energy-dispersive spectroscopy techniques. The morphology and distribution of metal nanoparticles over the C3N4 QD surface has been systematically investigated by high-resolution transmission electron microscopy (HRTEM) and SAED analysis. To explore the catalytic activity of the as-prepared samples, the reduction reaction of 4-nitrophenol with excellent performance is also investigated. It is noteworthy that the synthesis of both monometallic and bimetallic NPs can be accomplished by using a very small amount of g-C3N4, which can be used as a promising photoreducing material as well as a stabilizer for the synthesis of various metal nanoparticles.

8.
Nanoscale ; 8(20): 10849-56, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27165117

RESUMEN

We have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction. Micro-illumination electron diffraction reveals the existence of a coincidence lattice at the interface to the ruthenium substrate. The orientation of the side facets of the rod-like particles is identified as (111); the square particles are most likely of cuboidal shape, exhibiting (100) oriented side facets. The square and needle-like islands are predominantly found at step bunches and may be grown exclusively at temperatures exceeding 1000 °C.

9.
J Colloid Interface Sci ; 445: 76-83, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25596371

RESUMEN

In the present study, we report the synthesis of gold (Au), silver (Ag), and gold-silver alloy (Au-Ag) nanoparticles (NPs) by seed-mediated method using gemini surfactant, containing diethyl ether spacer group as a stabilizer. As-synthesized NPs are found very much stable and have been characterized using UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential techniques. The orientation of gemini surfactant molecules surrounding the metal NPs has been investigated exploiting twisted intramolecular charge transfer (TICT) fluorescence properties of a probe 4-(N,N-dimethylamino) cinnamaldehyde (DMACA). The quenching efficiencies of different NPs have been performed in the fluorescence of DMACA and are found to be different. This effect can be related to the location of DMACA as well as the electro-negativity of the metals as the extent of orientation of the surfactant molecules around NPs controls the location of DMACA in a bilayer. To support the location of DMACA, fluorescence quenching studies with cetylpyridinium chloride (CPC) as an external quencher have also been carried out.

10.
Phys Chem Chem Phys ; 14(17): 6054-66, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22441396

RESUMEN

Ultraviolet photoelectron spectroscopy (UPS), work function measurements, low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) have been used to study the adsorption and desorption of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], on the (1×2) clean surface reconstruction of Au(110) in the temperature range 100-674 K. The ionic liquid adsorbed without decomposition, and desorbed without leaving any residue on the surface. For adsorption at room temperature a monolayer of strongly bound ionic liquid was formed with four interface states visible in UP spectra. STM at 100 K showed that the monolayer consisted of well-ordered rows of adsorbed ionic liquid aligned parallel to the close packed rows of surface gold atoms (the [110] direction) with a separation of ×2 (the same as the clean surface reconstruction) between the rows in the orthogonal [001] direction. Multilayer adsorption at room temperature occurred by droplet formation followed by smoothing of the droplets to a layered morphology with time. Heating caused multilayer desorption at temperatures in the 363-383 K range, followed by partial monolayer desorption at 548 K to produce a Au(110)-(1×3) reconstructed surface with sub-monolayer domains of ionic liquid. Desorption of the remaining ionic liquid at 600 K caused the gold surface to reconstruct back to the clean (1×2) reconstruction.

11.
Phys Rev Lett ; 106(13): 136101, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517399

RESUMEN

We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.

12.
Nanotechnology ; 20(47): 475401, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19875880

RESUMEN

The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 x 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 x 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 x 2' reconstruction) starts at approximately 300 degrees C, whereas the terrace structures of Si(110) are thermally stable up to 500 degrees C. At approximately 650 degrees C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA