Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(15): 8094-8107, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567885

RESUMEN

Fog harvesting relies on intercepting atmospheric or industrial fog by placing a porous obstacle, for example, a mesh and collecting the deposited water. In the face of global water scarcity, such fog harvesting has emerged as a viable alternative source of potable water. Typical fog harvesting meshes suffer from poor collection efficiency due to aerodynamic bypassing of the oncoming fog stream and poor collection of the deposited water from the mesh. One pestering challenge in this context is the frequent clogging up of mesh pores by the deposited fog water, which not only yields low drainage efficiency but also generates high aerodynamic resistance to the oncoming fog stream, thereby negatively impacting the fog collection efficiency. Minimizing the clogging is possible by rendering the mesh fibers superhydrophobic, but that entails other detrimental effects like premature dripping and flow-induced re-entrainment of water droplets into the fog stream from the mesh fiber. Herein, we improvise on traditional interweaved metal mesh designs by defining critical parameters, viz., mesh pitch, shade coefficient, and fiber wettability, and deducing their optimal values from numerically and experimentally observed morphology of collected fog water droplets under various operating scenarios. We extend our investigations over a varying range of mesh-wettability, including superhydrophilic and hydrophobic fibers, and go on to find optimal shade coefficients which would theoretically render clog-proof fog harvesting meshes. The aerodynamic, deposition, and overall collection efficiencies are characterized. Hydrophobic meshes with square pores, having fiber diameters smaller than the capillary length scale of water, and an optimal shade coefficient are found to be the most effective design of such clog-proof meshes.

2.
Electrophoresis ; 44(17-18): 1369-1376, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332180

RESUMEN

Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (Cmax /C0 ) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, Cmax /C0 increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).


Asunto(s)
Electrólitos , Microfluídica , Temperatura , Reología , Electroforesis
3.
Langmuir ; 39(15): 5396-5407, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014297

RESUMEN

Condensing atmospheric water vapor on surfaces is a sustainable approach to addressing the potable water crisis. However, despite extensive research, a key question remains: what is the optimal combination of the mode and mechanism of condensation as well as the surface wettability for the best possible water harvesting efficacy? Here, we show how various modes of condensation fare differently in a humid air environment. During condensation from humid air, it is important to note that the thermal resistance across the condensate is nondominant, and the energy transfer is controlled by vapor diffusion across the boundary layer and condensate drainage from the condenser surface. This implies that, unlike condensation from pure steam, filmwise condensation from humid air would exhibit the highest water collection efficiency on superhydrophilic surfaces. To demonstrate this, we measured the condensation rates on different sets of superhydrophilic and superhydrophobic surfaces that were cooled below the dew points using a Peltier cooler. Experiments were performed over a wide range of degrees of subcooling (10-26 °C) and humidity-ratio differences (5-45 g/kg of dry air). Depending upon the thermodynamic parameters, the condensation rate is found to be 57-333% higher on the superhydrophilic surfaces compared to the superhydrophobic ones. The findings of the study dispel ambiguity about the preferred mode of vapor condensation from humid air on wettability-engineered surfaces and lead to the design of efficient atmospheric water harvesting systems.

4.
Chem Rev ; 122(22): 16752-16801, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36195098

RESUMEN

Effective manipulation of liquids on open surfaces without external energy input is indispensable for the advancement of point-of-care diagnostic devices. Open-surface microfluidics has the potential to benefit health care, especially in the developing world. This review highlights the prospects for harnessing capillary forces on surface-microfluidic platforms, chiefly by inducing smooth gradients or sharp steps of wettability on substrates, to elicit passive liquid transport and higher-order fluidic manipulations without off-the-chip energy sources. A broad spectrum of the recent progress in the emerging field of passive surface microfluidics is highlighted, and its promise for developing facile, low-cost, easy-to-operate microfluidic devices is discussed in light of recent applications, not only in the domain of biomedical microfluidics but also in the general areas of energy and water conservation.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Humectabilidad , Sistemas de Atención de Punto
5.
ACS Appl Mater Interfaces ; 14(28): 31689-31701, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786842

RESUMEN

Magnetic nanoparticles as drug carriers, despite showing immense promises in preclinical trials, have remained to be only of limited use in real therapeutic practice primarily due to unresolved anomalies concerning their grossly contrasting controllability and variability in performance in artificial test benches as compared to human tissues. To circumvent the deficits of reported in vitro drug testing platforms that deviate significantly from the physiological features of the living systems and result in this puzzling contrast, here, we fabricate a biomimetic microvasculature in a flexible tissue phantom and demonstrate distinctive mechanisms of magnetic-field-assisted controllable penetration of biocompatible iron oxide nanoparticles across the same, exclusively modulated by tissue deformability, which has by far remained unraveled. Our experiments deciphering the transport of magnetic nanoparticles in a blood analogue medium unveil a decisive interplay of the flexibility of the microvascular pathways, magnetic pull, and viscous friction toward orchestrating the optimal vascular penetration and targeting efficacy of the nanoparticles in colorectal tissue-mimicking bioengineered media. Subsequent studies with biological cells confirm the viability of using localized magnetic forces for aiding nanoparticle penetration within cancerous lesions. We establish nontrivially favorable conditions to induce a threshold force for vascular rupture and eventual target of the nanoparticles toward the desired extracellular site. These findings appear to be critical in converging the success of in vitro trials toward patient-specific targeted therapies depending on personalized vascular properties obtained from medical imaging data.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapéutico , Humanos , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral
6.
Langmuir ; 37(9): 2891-2899, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33635660

RESUMEN

Liquid-jet impact on porous, relatively thin solids has a variety of applications in heat transfer, filtration, liquid-fuel atomization, incontinence products, and solid-substrate erosion, among others. Many prior studies focused on liquid-jet impact on impermeable substrates, and some have investigated the hydraulic jump phenomenon. In the present work, the liquid jet strikes a superhydrophobic, permeable, metal mesh orthogonally, and the radial spreading and throughflow of the liquid are characterized. The prebreakthrough hydraulic jump, the breakthrough velocity, and the postbreakthrough spatial distributions of the liquid are investigated by varying the liquid properties (density, surface tension, and viscosity) and the openness of the metal mesh. The hydraulic jump radius in the prebreakthrough regime increases with jet velocity and is independent of the liquid properties and mesh geometry (pore size, wire diameter and pitch). The breakthrough velocity increases with surface tension of the liquid and decreases with the mesh opening diameter and liquid viscosity. A simple analytical model predicts the jet breakthrough velocity; its predictions are in accordance with the experimental observations. In the postbreakthrough regime, as the jet velocity increases, the liquid flow rate penetrating the mesh shows an initially steep increase, followed by a plateau, which is attributed to a Cassie-Baxter-to-Wenzel transition at the impact area of the mesh.

7.
J Colloid Interface Sci ; 581(Pt B): 690-697, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814192

RESUMEN

HYPOTHESIS: Quantitative characterization of surface wettability through contact angle (CA) measurement using the sessile droplet (SD) or captive bubble (CB) methods is often limited by the intrinsic wetting properties of the substrate. Situations may arise when an extreme surface wettability may preclude using one of the two methods for predicting the behaviors of droplets or bubbles on the surface. This warrants a relationship between the dynamic CAs measured via the SD and CB methods. While the two dynamic CAs (e.g., the advancing CA of SD and receding CA of CB) add up to 180° on a smooth surface, the simple geometric supplementary principle may not apply for rough surfaces. EXPERIMENTS: We perform a systematic wettability characterization of solid substrates with varying degrees of roughness using the sessile-droplet and captive-bubble methods, and interpret the experimental observations using a theoretical model. FINDINGS: The dynamic contact angles measured by the sessile-droplet and captive-bubble methods deviate from the supplementary principle as the surface roughness is increased. We present a theoretical explanation for this disparity and predict the values of the contact angles using prevalent thermodynamic models of wetting and contact-angle hysteresis on rough substrates. The theoretical prediction is in good agreement with the experimental observations.

8.
Langmuir ; 36(40): 11829-11835, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32921058

RESUMEN

Spreading of liquid droplets on wettability-confined paths has attracted considerable attention in the past decade. On the other hand, the inverse scenario of a gas bubble spreading on a submerged, wettability-confined track has rarely been studied. In the present work, an experimental investigation of the spreading of millimetric gas bubbles on horizontally submerged, textured, wettability-confined tracks is carried out. The width of the track is kept fixed along its entire length, and the spreading behavior of a gas bubble, dispensed at one end of the track, is studied. The effects of varying track width, bubble diameter, and ambient liquid are investigated. Post-contact, the gas bubble spreads along the track at a linear rate with time, while remaining pinned at its back end; the recorded spreading speed is O(0.5 m/s). An inertio-capillary force balance describes the experimentally observed spreading dynamics with excellent agreement.

9.
Trans Indian Natl Acad Eng ; 5(2): 333-336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38624344

RESUMEN

The outbreak of unknown viral pneumonia in Wuhan China in December 2019 led to a new coronavirus (SARS-CoV-2), which attracted worldwide attention, with the related COVID-19 disease quickly becoming a global pandemic. In about 5 months, this disease has led to ~ 4 million cases and claimed more than 200 k deaths as a result of its highly contagious nature. The present understanding is that SARS-CoV-2 is a type of influenza virus that can be transmitted through respiratory droplets and aerosols; Lewis (Nature 580:175, 2020). The primary methodology to prevent the spreading of this disease has been "social distancing" and usage of personal protective equipment (PPE) at the front lines of healthcare and other critical operations. The scale of the disease has led to unprecedented demand for PPEs and increased functionality of the same. This paper focuses on improving PPE functionality in a scalable manner by surface treatment and coating with appropriate materials and other functional enhancements, such as exposure to UV rays or other sterilizing agents (e.g., hydrogen peroxide).

10.
Trans Indian Natl Acad Eng ; 5(2): 393-398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38624384

RESUMEN

With the rapid spread of COVID-19 worldwide, the demand for appropriate face masks in the market has also skyrocketed. To ease strain on the supply of masks to the essential healthcare sector, it has become imperative that ordinary people rely more on home-made masks that can be easily put together using commonly available materials, while at the same time performing reasonably at arresting the ingress or egress of airborne droplets. Here, we propose a simple do-it-yourself (DIY) method for preparing a three-layered face mask that deploys two hydrophobic polypropylene nonwoven layers interspaced with a hydrophilic cellulosic cloth. The first hydrophobic layer, facing the user, allows high-momentum droplets (e.g., expelled by a sneeze or cough) to pass through and get absorbed in the next hydrophilic layer, thereby keeping the skin in contact with the mask dry and comfortable. The third (outermost) hydrophobic layer prevents penetration of the liquids from the middle layer to the outside, and also arrests any airborne droplets on its exterior. Simple tests show that our masks perform better in arresting the droplet transmission as compared to surgical masks available in the market.

11.
Langmuir ; 35(39): 12711-12721, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31499000

RESUMEN

The impact of liquid droplets on permeable substrates is important for a number of applications, such as fog collection, liquid atomization, and interaction of liquids with filters and textiles. When a water droplet impacts a wettable mesh, it penetrates the mesh easily with a part of the liquid remaining pinned. On the other hand, when striking a superhydrophobic mesh, part of the water droplet may penetrate and detach from the parent droplet, depending upon the impact velocity and the relative length scales of the droplet and the mesh. In most cases, the remaining droplet would rebound from the top of the superhydrophobic mesh. In this work, we study the impact of a water droplet on a wettability-patterned mesh, with the droplet centrally impacting the wettability-contrast line between the superhydrophobic and superhydrophilic semi-infinite domains. Half of the droplet seeing the superhydrophobic domain responds to it in a fashion that differs from the half hitting the superhydrophilic mesh side. This creates a wide range of post-impact scenarios, depending on the impact conditions and the relative characteristics of the droplet and the mesh. The difference in mesh wettability leads to a net unbalanced surface-tension force that makes the droplet rebound with a horizontal momentum component directed from the non-wettable to the wettable side. Some part of the droplet may even detach during such directional rebounding (i.e., vectoring). Along with the experimental results, a simplified analytical model is presented, which differentiates the cases of detachment or no detachment during vectoring.

12.
Langmuir ; 34(8): 2865-2875, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29377702

RESUMEN

Porous substrates have the ability to transport liquids not only laterally on their open surfaces but also transversally through their thickness. Directionality of the fluid transport can be achieved through spatial wettability patterning of these substrates. Different designs of wettability patterns are implemented herein to attain different schemes (modes) of three-dimensional transport in a high-density paper towel, which acts as a thin porous matrix directing the fluid. All schemes facilitate precise transport of metered liquid microvolumes (dispensed as droplets) on the surface and through the substrate. One selected mode features lateral fluid transport along the bottom surface of the substrate, with the top surface remaining dry, except at the initial droplet dispension point. This configuration is investigated in further detail, and an analytical model is developed to predict the temporal variation of the penetrating drop shape. The analysis and respective measurements agree within the experimental error limits, thus confirming the model's ability to account for the main transport mechanisms.

13.
Langmuir ; 34(5): 1899-1907, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29323498

RESUMEN

Spontaneous pumpless transport of droplets on wettability-confined tracks is important for various applications, such as rapid transport and mixing of fluid droplets, enhanced dropwise condensation, biomedical devices, and so forth. Recent studies have shown that on an open surface, a superhydrophilic track of diverging width, laid on a superhydrophobic background, facilitates the transport of water from the narrower end to the wider end at unprecedented rates (up to 40 cm/s) without external actuation. The spreading behavior on such surfaces, however, has only been characterized for water. Keeping in mind that such designs play a key role for a diverse range of applications, such as handling organic liquids and in point-of-care devices, the importance of characterizing the spreading behavior of viscous liquids on such surfaces cannot be overemphasized. In the present work, the spreading behavior on the aforementioned wettability-patterned diverging tracks was observed for fluids of different viscosities. Two dimensionless variables were identified, and a comprehensive relationship was obtained. Three distinct temporal regimes of droplet spreading were established: I), a Washburn-type slow spreading, II) a much faster Laplace pressure-driven spreading, and III), a sluggish density-augmented Tanner-type film spreading. The results offer design guidance for tracks that can pumplessly manage fluids of various viscosities and surface tensions.

14.
ACS Appl Mater Interfaces ; 10(5): 5038-5049, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29304279

RESUMEN

Liquid jet impingement on porous materials is particularly important in many applications of heat transfer, filtration, or in incontinence products. Generally, it is desired that the liquid not penetrate the substrate at or near the point of jet impact, but rather be distributed over a wider area before reaching the back side. A facile wettability-patterning technique is presented, whereby a water jet impinging orthogonally on a wettability-patterned nonwoven substrate is distributed on the top surface and through the porous matrix, and ultimately dispensed from prespecified points underneath the sample. A systematic approach is adopted to identify the optimum design that allows for a uniform distribution of the liquid on horizontally mounted substrates of ∼50 cm2 area, with minimal or no spilling over the sample edges at jet flow rates exceeding 1 L/min. The effect of the location of jet impingement on liquid distribution is also studied, and the design is observed to perform well even under offset jet impact conditions.

15.
Int J Numer Method Biomed Eng ; 34(4): e2943, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29178405

RESUMEN

Acoustophoresis is rapidly gaining prominence in the field of cell manipulation. In recent years, researchers have extensively used this method for separating different types of cells from the bulk fluid. In this paper, we propose a novel acoustophoresis-based technique to capture infected or abnormal erythrocytes from blood plasma. A typical acoustic device consisting of a transducer assembly, microfluidic cavity, and a reflector is considered. Based on the concept of impedance matching, a pair of antibody-coated polystyrene layers is placed in the nodal regions of an acoustic field within the cavity. This technique allows bi-directional migration of the suspended cells to the biofunctionalized surfaces. Therefore, simultaneous capture of infected erythrocytes on both the layers is feasible. Finite element method is used to model the pressure field as well as the motion of erythrocytes under the influence of acoustic radiation, drag, and gravitational forces. A parametric analysis is done by varying the excitation frequency, driving voltage, and the thickness of the polystyrene layers. The resulting changes in the pressure amplitude and field pattern are investigated. The erythrocyte collection efficiency, rate of collection, and the cell distribution on the layer surfaces are also determined under different field conditions. The occurrence of transient cavitation in the blood plasma-filled cavity at the chosen frequency is taken into account by using its threshold pressure value as the limiting factor of pressure amplitude. The study provides an insight into the phenomenon and serves as a guideline to fabricate low-cost, multifunctional rapid diagnostic devices based on acoustophoretic separation.


Asunto(s)
Acústica , Eritrocitos/parasitología , Microfluídica/métodos , Simulación por Computador , Impedancia Eléctrica , Humanos , Presión , Reproducibilidad de los Resultados
16.
Sci Rep ; 7(1): 1800, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28496152

RESUMEN

Self-driven surface micromixers (SDSM) relying on patterned-wettability technology provide an elegant solution for low-cost, point-of-care (POC) devices and lab-on-a-chip (LOC) applications. We present a SDSM fabricated by strategically patterning three wettable wedge-shaped tracks onto a non-wettable, flat surface. This SDSM operates by harnessing the wettability contrast and the geometry of the patterns to promote mixing of small liquid volumes (µL droplets) through a combination of coalescence and Laplace pressure-driven flow. Liquid droplets dispensed on two juxtaposed branches are transported to a coalescence station, where they merge after the accumulated volumes exceed a threshold. Further mixing occurs during capillary-driven, advective transport of the combined liquid over the third wettable track. Planar, non-wettable "islands" of different shapes are also laid on this third track to alter the flow in such a way that mixing is augmented. Several SDSM designs, each with a unique combination of island shapes and positions, are tested, providing a greater understanding of the different mixing regimes on these surfaces. The study offers design insights for developing low-cost surface microfluidic mixing devices on open substrates.

17.
ACS Appl Mater Interfaces ; 6(22): 19858-65, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25329492

RESUMEN

Marine oil spills seriously endanger sea ecosystems and coastal environments, resulting in a loss of energy resources. Environmental and economic demands emphasize the need for new methods of effectively separating oil-water mixtures, while collecting oil content at the same time. A new surface-tension-driven, gravity-assisted, one-step, oil-water separation method is presented for sustained filtration and collection of oil from a floating spill. A benchtop prototype oil collection device uses selective-wettability (superhydrophobic and superoleophilic) stainless steel mesh that attracts the floating oil, simultaneously separating it from water and collecting it in a container, requiring no preseparation pumping or pouring. The collection efficiencies for oils with wide ranging kinematic viscosities (0.32-70.4 cSt at 40 °C) are above 94%, including motor oil and heavy mineral oil. The prototype device showed high stability and functionality over repeated use, and can be easily scaled for efficient cleanup of large oil spills on seawater. In addition, a brief consolidation of separation requirements for oil-water mixtures of various oil densities is presented to demonstrate the versatility of the material system developed herein.

18.
Langmuir ; 30(43): 13103-15, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25295388

RESUMEN

Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.


Asunto(s)
Biomimética/métodos , Hidrodinámica , Humectabilidad , Calor , Agua/química
19.
Lab Chip ; 14(9): 1538-50, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24622962

RESUMEN

Surface tension driven transport of liquids on open substrates offers an enabling tool for open micro total analysis systems that are becoming increasingly popular for low-cost biomedical diagnostic devices. The present study uses a facile wettability patterning method to produce open microfluidic tracks that - due to their shape, surface texture and chemistry - are capable of transporting a wide range of liquid volumes (~1-500 µL) on-chip, overcoming viscous and other opposing forces (e.g., gravity) at the pertinent length scales. Small volumes are handled as individual droplets, while larger volumes require repeated droplet transport. The concept is developed and demonstrated with coatings based on TiO2 filler particles, which, when present in adequate (~80 wt.%) quantities within a hydrophobic fluoroacrylic polymer matrix, form composites that are intrinsically superhydrophobic. Such composite coatings become superhydrophilic upon exposure to UV light (390 nm). A commercial laser printer-based photo-masking approach is used on the coating for spatially selective wettability conversion from superhydrophobic to superhydrophilic. Carefully designed wedge-patterned surface tension confined tracks on the open-air devices move liquid on them without power input, even when acting against gravity. Simple designs of wettability patterning are used on versatile substrates (e.g., metals, polymers, paper) to demonstrate complex droplet handling tasks, e.g., merging, splitting and metered dispensing, some of which occur in 3-D geometries. Fluid transport rates of up to 350 µL s(-1) are attained. Applicability of the design on metal substrates allows these devices to be used also for other microscale engineering applications, e.g., water management in fuel cells.

20.
Int J Nanomedicine ; 9: 1287-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24648728

RESUMEN

In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.


Asunto(s)
Colágeno/química , Grafito/química , Nanoestructuras/química , Materiales Biomiméticos/química , Coloides , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Transmisión , Nanomedicina , Nanoestructuras/ultraestructura , Nanotecnología , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia , Espectrometría Raman , Conductividad Térmica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...