Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Commun Signal ; 17(3): 925-937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37043098

RESUMEN

Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.

2.
PLoS One ; 18(2): e0281762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36800360

RESUMEN

Sound is a physical stimulus that has the potential to affect various growth parameters of microorganisms. However, the effects of audible sound on microbes reported in the literature are inconsistent. Most published studies involve transmitting sound from external speakers through air toward liquid cultures of the microorganisms. However, the density differential between air and liquid culture could greatly alter the sound characteristics to which the microorganisms are exposed. In this study we apply white noise sound in a highly controlled experimental system that we previously established for transmitting sound underwater directly into liquid cultures to examine the effects of two key sound parameters, frequency and intensity, on the fermentation performance of a commercial Saccharomyces cerevisiae ale yeast growing in a maltose minimal medium. We performed these experiments in an anechoic chamber to minimise extraneous sound, and find little consistent effect of either sound frequency or intensity on the growth rate, maltose consumption, or ethanol production of this yeast strain. These results, while in contrast to those reported in most published studies, are consistent with our previous study showing that direct underwater exposure to white noise sound has little impact on S. cerevisiae volatile production and sugar utilization in beer medium. Thus, our results suggest the possibility that reported microorganism responses to sound may be an artefact associated with applying sound to cultures externally via transmission through air.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentación , Maltosa/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Cerveza
3.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36113481

RESUMEN

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Asunto(s)
ARN Polimerasa I , Factores de Transcripción , Humanos , Ratones , Animales , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Ribosómico/genética , Transcripción Genética , ADN Ribosómico/genética , ARN , Cromatina
4.
J Fungi (Basel) ; 8(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35887427

RESUMEN

Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.

5.
J Evol Biol ; 35(8): 1126-1137, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35830478

RESUMEN

Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near-instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome-wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans-acting cross-talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high-level expression outcomes, regardless of the particular species or kingdom.


Asunto(s)
Hibridación Genética , Transcriptoma , Animales , Eucariontes/genética , Genoma , Ploidias
6.
Genomics ; 114(4): 110430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35830947

RESUMEN

Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Variaciones en el Número de Copia de ADN , ADN Ribosómico/genética , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
FEMS Yeast Res ; 22(1)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35298616

RESUMEN

Saccharomyces cerevisiae is an exceptional genetic system, with genetic crosses facilitated by its ability to be maintained in haploid and diploid forms. Such crosses are straightforward if the mating type/ploidy of the strains is known. Several techniques can determine mating type (or ploidy), but all have limitations. Here, we validate a simple, cheap and robust method to identify S. cerevisiae mating types. When cells of opposite mating type are mixed in liquid media, they 'creep' up the culture vessel sides, a phenotype that can be easily detected visually. In contrast, mixtures of the same mating type or with a diploid simply settle out. The phenotype is observable for several days under a range of routine growth conditions and with different media/strains. Microscopy suggests that cell aggregation during mating is responsible for the phenotype. Yeast knockout collection analysis identified 107 genes required for the creeping phenotype, with these being enriched for mating-specific genes. Surprisingly, the RIM101 signaling pathway was strongly represented. We propose that RIM101 signaling regulates aggregation as part of a wider, previously unrecognized role in mating. The simplicity and robustness of this method make it ideal for routine verification of S. cerevisiae mating type, with future studies required to verify its molecular basis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Haploidia , Fenotipo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Am J Med Genet A ; 188(4): 1299-1306, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34970864

RESUMEN

The beta-actin gene (ACTB) encodes a ubiquitous cytoskeletal protein, essential for embryonic development in humans. De novo heterozygous missense variants in the ACTB are implicated in causing Baraitser-Winter cerebrofrontofacial syndrome (BWCFFS; MIM#243310). ACTB pathogenic variants are rarely associated with intestinal malformations. We report on a rare case of monozygotic twins presenting with proximal small bowel atresia and hydrops in one, and apple-peel bowel atresia and laryngeal dysgenesis in the other. The twin with hydrops could not be resuscitated. Intensive and surgical care was provided to the surviving twin. Rapid trio genome sequencing identified a de novo missense variant in ACTB (NM_00101.3:c.1043C>T; p.(Ser348Leu)) that guided the care plan. The identical variant subsequently was identified in the demised twin. To characterize the functional effect, the variant was recreated as a pseudoheterozygote in a haploid wild-type S. cerevisiae strain. There was an obvious growth defect of the yACT1S348L/WT pseudoheterozygote compared to a yACT1WT/WT strain when grown at 22°C but not when grown at 30°C, consistent with the yACT1 S348L variant having a functional defect that is dominant over the wild-type allele. The functional results provide supporting evidence that the Ser348Leu variant is likely to be a pathogenic variant, including being associated with intestinal malformations in BWCFFS, and can demonstrate variable expressivity within monozygotic twins.


Asunto(s)
Atresia Intestinal , Gemelos Monocigóticos , Actinas/genética , Actinas/metabolismo , Variación Biológica Poblacional , Anomalías Craneofaciales , Edema , Epilepsia , Facies , Humanos , Discapacidad Intelectual , Atresia Intestinal/diagnóstico , Atresia Intestinal/genética , Lisencefalia , Saccharomyces cerevisiae/metabolismo , Gemelos Monocigóticos/genética
9.
Fungal Genet Biol ; 158: 103646, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826598

RESUMEN

Antimicrobial volatile organic compounds (VOCs) may provide fungi an advantage over other competing microorganisms. As these defensive metabolites are often produced in response to microbial competitors, they are easily overlooked in axenic cultures. We used media supplemented with spent medium from Candida albicans to induce the expression of a broad-spectrum antimicrobial response in a previously uncharacterised white-rot fungus, Scytinostroma sp. Crude extractions of Scytinostroma sp. metabolites were found to be cytotoxic to fibroblast cells and antimicrobial to filamentous fungi, yeasts and Gram-positive bacteria. Volatile antimicrobial activity was observed for Scytinostroma sp. cultures and metabolite extracts using antimicrobial assays in bi-compartmentalised plates. Culture headspace analysis using solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) revealed a pronounced shift in Scytinostroma sp. VOCs when cultured on media supplemented with C. albicans spent medium. We observed a significant increase in the levels of 45 identified VOCs, including 7 metabolites with reported antimicrobial activity. Using preparative HPLC combined with GC-MS, we determined that isovelleral is likely to be the main broad-spectrum antimicrobial metabolite produced by Scytinostroma sp. Isovelleral is a sesquiterpene dialdehyde with both antibiotic and antifeedant properties, previously detected in fruit bodies of other Basidiomycetes.


Asunto(s)
Basidiomycota , Compuestos Orgánicos Volátiles , Frutas , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida
10.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885824

RESUMEN

This study investigated the impact of varying sound conditions (frequency and intensity) on yeast growth, fermentation performance and production of volatile organic compounds (VOCs) in beer. Fermentations were carried out in plastic bags suspended in large water-filled containers fitted with underwater speakers. Ferments were subjected to either 200-800 or 800-2000 Hz at 124 and 140 dB @ 20 µPa. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to identify and measure the relative abundance of the VOCs produced. Sound treatment had significant effects on the number of viable yeast cells in suspension at 10 and 24 h (p < 0.05), with control (silence) samples having the highest cell numbers. For wort gravity, there were significant differences between treatments at 24 and 48 h, with the silence control showing the lowest density before all ferments converged to the same final gravity at 140 h. A total of 33 VOCs were identified in the beer samples, including twelve esters, nine alcohols, three acids, three aldehydes, and six hop-derived compounds. Only the abundance of some alcohols showed any consistent response to the sound treatments. These results show that the application of audible sound via underwater transmission to a beer fermentation elicited limited changes to wort gravity and VOCs during fermentation.


Asunto(s)
Cerveza/análisis , Fermentación , Saccharomyces cerevisiae/crecimiento & desarrollo , Sonido , Compuestos Orgánicos Volátiles/análisis , Recuento de Células , Ésteres/análisis , Concentración de Iones de Hidrógeno , Análisis de Componente Principal , Saccharomyces cerevisiae/citología
11.
Metabolites ; 11(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34564421

RESUMEN

The biological effect of sound on microorganisms has been a field of interest for many years, with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to 20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth, depending upon the organism and frequency of sound used. In the brewer's yeast Saccharomyces cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 µPa tone at different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by headspace gas chromatography-mass spectrometry. Sound treatments resulted in a 23% increase in growth rate compared to that of silence. Subsequent analysis showed significant differences in the volatilomes between all experimental conditions. Specifically, aroma compounds associated with citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial processes, such as beer brewing, could be modulated by the application of audible sound at specific frequencies during growth.

12.
Front Cell Dev Biol ; 8: 568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719798

RESUMEN

Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.

14.
Commun Biol ; 2: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701204

RESUMEN

The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.


Asunto(s)
Transformación Celular Neoplásica/genética , ADN Ribosómico/genética , Genes de ARNr , Predisposición Genética a la Enfermedad , Genoma , ARN Polimerasa II/genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Progresión de la Enfermedad , Epistasis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
15.
Mol Phylogenet Evol ; 133: 352-361, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30599197

RESUMEN

Mammalian genomes contain a number of duplicated genes, and sequence identity between these duplicates can be maintained by purifying selection. However, between-duplicate recombination can also maintain sequence identity between copies, resulting in a pattern known as concerted evolution where within-genome repeats are more similar to each other than to orthologous repeats in related species. Here we investigated the tandemly-repeated keratin-associated protein 1 (KAP1) gene family, KRTAP1, which encodes proteins that are important components of hair and wool in mammals. Comparison of eutherian mammal KRTAP1 gene repeats within and between species shows a strong pattern of concerted evolution. However, in striking contrast to the coding regions of these genes, we find that the flanking regions have a divergent pattern of evolution. This contrast in evolutionary pattern transitions abruptly near the start and stop codons of the KRTAP1 genes. We reveal that this difference in evolutionary patterns is not explained by conventional purifying selection, nor is it likely a consequence of codon adaptation or reverse transcription of KRTAP1-n mRNA. Instead, the evidence suggests that these contrasting patterns result from short-tract gene conversion events that are biased to the KRTAP1 coding region by selection and/or differential sequence divergence. This work demonstrates the power that gene conversion has to finely shape the evolution of repetitive genes, and provides another distinctive pattern of contrasting evolutionary outcomes that results from gene conversion. A greater emphasis on exploring the evolution of multi-gene eukaryotic families will reveal how common different contrasting evolutionary patterns are in gene duplicates.


Asunto(s)
Evolución Molecular , Queratinas/genética , Mamíferos/genética , Sistemas de Lectura Abierta/genética , Animales , Secuencia de Bases , Codón/genética , ADN Intergénico/genética , Conversión Génica , Queratinas/metabolismo , Filogenia , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selección Genética , Ovinos/genética , Secuencias Repetidas en Tándem/genética
16.
PLoS One ; 13(12): e0207531, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517151

RESUMEN

Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.


Asunto(s)
Genes de ARNr/genética , Genómica/métodos , Primates/genética , ARN Ribosómico/genética , Animales , Secuencia Conservada/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Evolución Molecular , Variación Genética , Humanos , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Transcriptoma/genética
17.
PLoS Genet ; 14(10): e1007467, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356280

RESUMEN

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


Asunto(s)
ADN de Hongos/genética , Epichloe/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia Rica en At/genética , ADN de Hongos/química , Proteínas Fúngicas/genética , Secuencia Rica en GC/genética , Perfilación de la Expresión Génica/métodos , Hifa/genética , Análisis de Secuencia de ADN/métodos , Simbiosis/genética
18.
Mycologia ; 109(5): 715-729, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29370579

RESUMEN

Endophytes of the genus Epichloë (Clavicipitaceae, Ascomycota) frequently occur within cool-season grasses and form interactions with their hosts that range from mutualistic to antagonistic. Many Epichloë species have arisen via interspecific hybridization, resulting in species with two or three subgenomes that retain all or nearly all of their original parental genomes, a process termed allopolyploidization. Here, we characterize Epichloë hybrida, sp. nov., a mutualistic species that has increasingly become a model system for investigating allopolyploidy in fungi. The Epichloë species so far identified as the closest known relatives of the two progenitors of E. hybrida are E. festucae var. lolii and E. typhina. We confirm that the nuclear genome of E. hybrida contains two homeologs of most protein-coding genes from E. festucae and E. typhina, with genome-wide gene expression analysis indicating a slight bias in overall gene expression from the E. typhina subgenome. Mitochondrial DNA is detectable only from E. festucae, whereas ribosomal DNA is detectable only from E. typhina. Inheriting ribosomal DNA from just one parent might be expected to preferentially favor interactions with ribosomal proteins from the same parent, but we find that ribosomal protein genes from both parental subgenomes are nearly all expressed equally in E. hybrida. Finally, we provide a comprehensive set of resources for this model system that are intended to facilitate further study of fungal hybridization by other researchers.


Asunto(s)
Diploidia , Endófitos/clasificación , Endófitos/genética , Epichloe/clasificación , Epichloe/genética , Quimera , ADN de Hongos/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , Perfilación de la Expresión Génica
19.
Am Nat ; 188(6): 602-614, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27860510

RESUMEN

Polyploidy-the increase in the number of whole chromosome sets-is an important evolutionary force in eukaryotes. Polyploidy is well recognized throughout the evolutionary history of plants and animals, where several ancient events have been hypothesized to be drivers of major evolutionary radiations. However, fungi provide a striking contrast: while numerous recent polyploids have been documented, ancient fungal polyploidy is virtually unknown. We present a survey of known fungal polyploids that confirms the absence of ancient fungal polyploidy events. Three hypotheses may explain this finding. First, ancient fungal polyploids are indeed rare, with unique aspects of fungal biology providing similar benefits without genome duplication. Second, fungal polyploids are not successful in the long term, leading to few extant species derived from ancient polyploidy events. Third, ancient fungal polyploids are difficult to detect, causing the real contribution of polyploidy to fungal evolution to be underappreciated. We consider each of these hypotheses in turn and propose that failure to detect ancient events is the most likely reason for the lack of observed ancient fungal polyploids. We examine whether existing data can provide evidence for previously unrecognized ancient fungal polyploidy events but discover that current resources are too limited. We contend that establishing whether unrecognized ancient fungal polyploidy events exist is important to ascertain whether polyploidy has played a key role in the evolution of the extensive complexity and diversity observed in fungi today and, thus, whether polyploidy is a driver of evolutionary diversifications across eukaryotes. Therefore, we conclude by suggesting ways to test the hypothesis that there are unrecognized polyploidy events in the deep evolutionary history of the fungi.


Asunto(s)
Evolución Molecular , Hongos/genética , Poliploidía , Evolución Biológica
20.
Methods Mol Biol ; 1455: 161-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27576718

RESUMEN

The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA.


Asunto(s)
Biología Computacional/métodos , Eucariontes/genética , Genes de ARNr , Genómica , Secuencias Repetitivas de Ácidos Nucleicos , Secuenciación Completa del Genoma , Evolución Molecular , Genómica/métodos , Filogenia , Análisis de Secuencia de ADN , Programas Informáticos , Secuencias Repetidas en Tándem , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...