Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477664

RESUMEN

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Exenatida/farmacología , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Prostaglandinas/metabolismo , Prostaglandinas/farmacología
3.
Diabetes ; 72(12): 1766-1780, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725952

RESUMEN

Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.


Asunto(s)
Resistencia a la Insulina , Humanos , Animales , Embarazo , Femenino , Adolescente , Resistencia a la Insulina/fisiología , Macaca fuscata/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Occidental/efectos adversos , Ácidos Grasos/metabolismo , Ceramidas/metabolismo , Dieta Alta en Grasa
4.
Am J Physiol Endocrinol Metab ; 325(3): E280-E290, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529833

RESUMEN

Stimulation of functional ß-cell mass expansion can be beneficial for the treatment of type 2 diabetes. Our group has previously demonstrated that the matricellular protein CCN2 can induce ß-cell mass expansion during embryogenesis, and postnatally during pregnancy and after 50% ß-cell injury. The mechanism by which CCN2 stimulates ß-cell mass expansion is unknown. However, CCN2 does not induce ß-cell proliferation in the setting of euglycemic and optimal functional ß-cell mass. We thus hypothesized that ß-cell stress is required for responsiveness to CCN2 treatment. In this study, a doxycycline-inducible ß-cell-specific CCN2 transgenic mouse model was utilized to evaluate the effects of CCN2 on ß-cell stress in the setting of acute (thapsigargin treatment ex vivo) or chronic [high-fat diet or leptin receptor haploinsufficiency (db/+) in vivo] cellular stress. CCN2 induction during 1 wk or 10 wk of high-fat diet or in db/+ mice had no effect on markers of ß-cell stress. However, CCN2 induction did result in a significant increase in ß-cell mass over high-fat diet alone when animals were fed high-fat diet for 10 wk, a duration known to induce insulin resistance. CCN2 induction in isolated islets treated with thapsigargin ex vivo resulted in upregulation of the gene encoding the Nrf2 transcription factor, a master regulator of antioxidant genes, suggesting that CCN2 further activates this pathway in the presence of cell stress. These studies indicate that the potential of CCN2 to induce ß-cell mass expansion is context-dependent and that the presence of ß-cell stress does not ensure ß-cell proliferation in response to CCN2.NEW & NOTEWORTHY CCN2 promotes ß-cell mass expansion in settings of suboptimal ß-cell mass. Here, we demonstrate that the ability of CCN2 to induce ß-cell mass expansion in the setting of ß-cell stress is context-dependent. Our results suggest that ß-cell stress is necessary but insufficient for CCN2 to increase ß-cell proliferation and mass. Furthermore, we found that CCN2 promotes upregulation of a key antioxidant transcription factor, suggesting that modulation of ß-cell oxidative stress contributes to the actions of CCN2.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Diabetes Mellitus Tipo 2 , Animales , Femenino , Ratones , Embarazo , Antioxidantes , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Ratones Transgénicos , Tapsigargina/farmacología , Factores de Transcripción
5.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134140

RESUMEN

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Embarazo , Animales , Masculino , Femenino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Occidental/efectos adversos , Primates/metabolismo , Expresión Génica , Islotes Pancreáticos/metabolismo
6.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058409

RESUMEN

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Humanos , Animales , Femenino , Dieta Occidental/efectos adversos , Primates , Inmunidad Innata
7.
Hepatol Commun ; 7(2): e0014, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36691970

RESUMEN

Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Occidental , Antioxidantes , Fibrosis , Fenotipo , Primates
8.
Trends Immunol ; 44(3): 162-171, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707339

RESUMEN

The etiology of most autoimmune diseases remains unknown; however, shared among them is a disruption of immunoregulation. Prostaglandin lipid signaling molecules possess context-dependent immunoregulatory properties, making their role in autoimmunity difficult to decipher. For example, prostaglandin E2 (PGE2) can function as an immunosuppressive molecule as well as a proinflammatory mediator in different circumstances, contributing to the expansion and activation of T cell subsets associated with autoimmunity. Recently, PGE2 was shown to play important roles in the resolution and post-resolution phases of inflammation, promoting return to tissue homeostasis. We propose that PGE2 plays both proinflammatory and pro-resolutory roles in the etiology of autoimmunity, and that harnessing this signaling pathway during the resolution phase might help prevent autoimmune attack.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Humanos , Dinoprostona/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/metabolismo
9.
Cell Rep ; 40(8): 111255, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001973

RESUMEN

Persistent endoplasmic reticulum (ER) stress induces islet inflammation and ß cell loss. How islet inflammation contributes to ß cell loss remains uncertain. We have reported previously that chronic overnutrition-induced ER stress in ß cells causes Ripk3-mediated islet inflammation, macrophage recruitment, and a reduction of ß cell numbers in a zebrafish model. We show here that ß cell loss results from the intricate communications among ß cells, macrophages, and neutrophils. Macrophage-derived Tnfa induces cxcl8a in ß cells. Cxcl8a, in turn, attracts neutrophils to macrophage-contacted "hotspots" where ß cell loss occurs. We also show potentiation of chemokine expression in stressed mammalian ß cells by macrophage-derived TNFA. In Akita and db/db mice, there is an increase in CXCL15-positive ß cells and intra-islet neutrophils. Blocking neutrophil recruitment in Akita mice preserves ß cell mass and slows diabetes progression. These results reveal an important role of neutrophils in persistent ER stress-induced ß cell loss.


Asunto(s)
Células Secretoras de Insulina , Neutrófilos , Animales , Apoptosis , Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Mamíferos , Ratones , Pez Cebra
10.
Cell Rep ; 39(13): 111011, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35767947

RESUMEN

Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet ß cells. We hypothesize that inflammatory signaling within ß cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in ß cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of ß cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in ß cells exhibit an increase in a population of ß cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in ß cells promotes autoimmunity during type 1 diabetes progression.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Animales , Antígeno B7-H1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Femenino , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD
11.
iScience ; 25(5): 104345, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35602948

RESUMEN

LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.

12.
Metabolites ; 12(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35448529

RESUMEN

Arachidonic acid (AA) is a polyunsaturated 20-carbon fatty acid present in phospholipids in the plasma membrane. The three primary pathways by which AA is metabolized are mediated by cyclooxygenase (COX) enzymes, lipoxygenase (LOX) enzymes, and cytochrome P450 (CYP) enzymes. These three pathways produce eicosanoids, lipid signaling molecules that play roles in biological processes such as inflammation, pain, and immune function. Eicosanoids have been demonstrated to play a role in inflammatory, renal, and cardiovascular diseases as well type 1 and type 2 diabetes. Alterations in AA release or AA concentrations have been shown to affect insulin secretion from the pancreatic beta cell, leading to interest in the role of AA and its metabolites in the regulation of beta-cell function and maintenance of beta-cell mass. In this review, we discuss the metabolism of AA by COX, LOX, and CYP, the roles of these enzymes and their metabolites in beta-cell mass and function, and the possibility of targeting these pathways as novel therapies for treating diabetes.

13.
Physiol Rep ; 10(7): e15212, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35403369

RESUMEN

Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dinoprostona/farmacología , Humanos , Ratones , Miocitos Cardíacos , Subtipo EP3 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E
14.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935645

RESUMEN

Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.


Asunto(s)
Dieta Occidental/efectos adversos , Cirrosis Hepática/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Animales , Femenino , Exposición Materna , Embarazo , Primates , Útero
15.
Diabetes ; 70(12): 2850-2859, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34610983

RESUMEN

Controllable genetic manipulation is an indispensable tool in research, greatly advancing our understanding of cell biology and physiology. However in ß-cells, transgene silencing, low inducibility, ectopic expression, and off-targets effects are persistent challenges. In this study, we investigated whether an inducible Tetracycline (Tet)-Off system with ß-cell-specific mouse insulin promoter (MIP)-itTA-driven expression of tetracycline operon (TetO)-CreJaw/J could circumvent previous issues of specificity and efficacy. Following assessment of tissue-specific gene recombination, ß-cell architecture, in vitro and in vivo glucose-stimulated insulin secretion, and whole-body glucose homeostasis, we discovered that expression of any tetracycline-controlled transactivator (e.g., improved itTA, reverse rtTA, or tTA) in ß-cells significantly reduced Insulin gene expression and decreased insulin content. This translated into lower pancreatic insulin levels and reduced insulin secretion in mice carrying any tTA transgene, independent of Cre recombinase expression or doxycycline exposure. Our study echoes ongoing challenges faced by fundamental researchers working with ß-cells and highlights the need for consistent and comprehensive controls when using the tetracycline-controlled transactivator systems (Tet-On or Tet-Off) for genome editing.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Tetraciclina/farmacología , Transactivadores/efectos de los fármacos , Transactivadores/genética , Transgenes/efectos de los fármacos
16.
Mol Metab ; 54: 101347, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626853

RESUMEN

OBJECTIVE: Type 2 diabetes is characterized by hyperglycemia and inflammation. Prostaglandin E2, which signals through four G protein-coupled receptors (EP1-4), is a mediator of inflammation and is upregulated in diabetes. We have shown previously that EP3 receptor blockade promotes ß-cell proliferation and survival in isolated mouse and human islets ex vivo. Here, we analyzed whether systemic EP3 blockade could enhance ß-cell mass and identity in the setting of type 2 diabetes using mice with a spontaneous mutation in the leptin receptor (Leprdb). METHODS: Four- or six-week-old, db/+, and db/db male mice were treated with an EP3 antagonist daily for two weeks. Pancreata were analyzed for α-cell and ß-cell proliferation and ß-cell mass. Islets were isolated for transcriptomic analysis. Selected gene expression changes were validated by immunolabeling of the pancreatic tissue sections. RESULTS: EP3 blockade increased ß-cell mass in db/db mice through enhanced ß-cell proliferation. Importantly, there were no effects on α-cell proliferation. EP3 blockade reversed the changes in islet gene expression associated with the db/db phenotype and restored the islet architecture. Expression of the GLP-1 receptor was slightly increased by EP3 antagonist treatment in db/db mice. In addition, the transcription factor nuclear factor E2-related factor 2 (Nrf2) and downstream targets were increased in islets from db/db mice in response to treatment with an EP3 antagonist. The markers of oxidative stress were decreased. CONCLUSIONS: The current study suggests that EP3 blockade promotes ß-cell mass expansion in db/db mice. The beneficial effects of EP3 blockade may be mediated through Nrf2, which has recently emerged as a key mediator in the protection against cellular oxidative damage.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Estrés Oxidativo/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
17.
Sci Rep ; 11(1): 12977, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155315

RESUMEN

The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.


Asunto(s)
Dieta Occidental , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Alimentación Animal , Animales , Biomarcadores/sangre , Glucemia , Femenino , Edad Gestacional , Insulina/sangre , Macaca fuscata , Embarazo
20.
Diabetes ; 70(4): 903-916, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33526589

RESUMEN

Current evidence indicates that proliferating ß-cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for ß-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized ß-cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In nonmitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, or most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes before Ki67 coating of the chromosome surface. Pdx1 uniformly localizes in the cytoplasm at prometaphase and becomes enriched around the chromosomes again at the end of cell division, before nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and overexpression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein levels are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in ß-cell function and proliferation.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/fisiología , Transactivadores/metabolismo , Animales , Western Blotting , Ciclo Celular/genética , Línea Celular , Proliferación Celular/genética , Proliferación Celular/fisiología , Femenino , Citometría de Flujo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...