Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 170(1): 263-71, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19501962

RESUMEN

The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.


Asunto(s)
Mataderos , Biodegradación Ambiental , Residuos Industriales/prevención & control , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Animales , Bacillus/metabolismo , Grasas/metabolismo , Filtración , Hidrólisis , Proteínas/metabolismo , Solubilidad
2.
Bioresour Technol ; 99(14): 6105-11, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18242084

RESUMEN

Anaerobic digestion of cheese whey wastewaters (CW) was investigated in a system consisting of an ecological pretreatment followed by upflow anaerobic filter (UAF). The pretreatment was conducted to solve the inhibition problems during anaerobic treatment of CW caused by the amounts of fats, proteins and carbohydrates and to avoid the major problems of clogging in the reactor. The optimized ecological pretreatment of diluted CW induce removal yields of 50% of chemical oxygen demand (COD) and 60% of total suspended solids (TSS) after acidification by Lactobacillus paracasei at 32 degrees C during 20 h and neutralization with lime. The pretreated CW was used to feed UAF (35 degrees C). The effects of organic loading rate (OLR) and hydraulic retention time (HRT) on the pretreated CW anaerobic degradation were examined. The average total COD removals achieved was 80-90%. The performance of the reactor was depressed by increasing the COD concentration to 20 g/l (OLR = 4 gCOD/ld) and the COD removal efficiency was reduced to 72%. Significant methane yield (280 l/kg COD removal) was obtained at an HRT of 2 days.


Asunto(s)
Anaerobiosis , Queso , Ecología , Residuos Industriales , Lactobacillus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...