Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429266

RESUMEN

We fabricated large-area atomically thin MoS2 layers through the direct transformation of crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-crystal domain size) with areas of up to 300 × 300 µm2, 2-4 layers in thickness and show a marked p-type behavior. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.

2.
Nanomaterials (Basel) ; 9(8)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382621

RESUMEN

Metal halide perovskites are known to suffer from rapid degradation, limiting their direct applicability. Here, the degradation of phenethylammonium lead iodide (PEA2PbI4) two-dimensional perovskites under ambient conditions was studied using fluorescence, absorbance, and fluorescence lifetime measurements. It was demonstrated that the long-term stability of two-dimensional perovskites could be achieved through the encapsulation with hexagonal boron nitride. While un-encapsulated perovskite flakes degraded within hours, the encapsulated perovskites were stable for at least three months. In addition, encapsulation considerably improved the stability under laser irradiation. The environmental stability, combined with the improved durability under illumination, is a critical ingredient for thorough spectroscopic studies of the intrinsic optoelectronic properties of this material platform.

3.
Nano Lett ; 18(12): 7651-7657, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30403876

RESUMEN

Spatially periodic structures with a long-range period, referred to as a moiré pattern, can be obtained in van der Waals bilayers in the presence of a small stacking angle or of lattice mismatch between the monolayers. Theoretical predictions suggest that the resulting spatially periodic variation of the band structure modifies the optical properties of both intra- and interlayer excitons of transition metal dichalcogenide heterostructures. Here, we report on the impact of the moiré pattern formed in a MoSe2/MoS2 heterobilayer encapsulated in hexagonal boron nitride. The periodic in-plane potential results in a splitting of the MoSe2 exciton and trion in emission and (for the exciton) absorption spectra. The observed energy difference between the split peaks is fully consistent with theoretical predictions.

4.
Nanomaterials (Basel) ; 8(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223445

RESUMEN

The research field of two dimensional (2D) materials strongly relies on optical microscopy characterization tools to identify atomically thin materials and to determine their number of layers. Moreover, optical microscopy-based techniques opened the door to study the optical properties of these nanomaterials. We presented a comprehensive study of the differential reflectance spectra of 2D semiconducting transition metal dichalcogenides (TMDCs), MoS2, MoSe2, WS2, and WSe2, with thickness ranging from one layer up to six layers. We analyzed the thickness-dependent energy of the different excitonic features, indicating the change in the band structure of the different TMDC materials with the number of layers. Our work provided a route to employ differential reflectance spectroscopy for determining the number of layers of MoS2, MoSe2, WS2, and WSe2.

5.
Chem Soc Rev ; 47(1): 53-68, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29111548

RESUMEN

Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.

6.
Beilstein J Nanotechnol ; 8: 2357-2362, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29181292

RESUMEN

We study mechanically exfoliated nanosheets of franckeite by quantitative optical microscopy. The analysis of transmission-mode and epi-illumination-mode optical microscopy images provides a rapid method to estimate the thickness of the exfoliated flakes at first glance. A quantitative analysis of the optical contrast spectra by means of micro-reflectance allows one to determine the refractive index of franckeite over a broad range of the visible spectrum through a fit of the acquired spectra to a model based on the Fresnel law.

7.
Inorg Chem ; 56(22): 14214-14219, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29116775

RESUMEN

Hybrid organic-inorganic perovskites, MAPbX3 (X = halogen), containing methylammonium (MA: CH3-NH3+) in the large voids conformed by the PbX6 octahedral network, are the active absorption materials in the new generation of solar cells. CH3NH3PbBr3 is a promising member with a large band gap that gives rise to a high open circuit voltage. A deep knowledge of the crystal structure and, in particular, the MA conformation inside the perovskite cage across the phase transitions undergone below room temperature, seems essential to establish structure-property correlations that may drive to further improvements. The presence of protons requires the use of neutrons, combined with synchrotron XRD data that help to depict subtle symmetry changes undergone upon cooling. We present a consistent picture of the structural features of this fascinating material, in complement with photocurrent measurements from a photodetector device, demonstrating the potential of MAPbBr3 in optoelectronics.

8.
Nanotechnology ; 28(45): 455703, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29039361

RESUMEN

Two-dimensional (2D) semiconducting materials are particularly appealing for many applications. Although theory predicts a large number of 2D materials, experimentally only a few of these materials have been identified and characterized comprehensively in the ultrathin limit. Lead iodide, which belongs to the transition metal halides family and has a direct bandgap in the visible spectrum, has been known for a long time and has been well characterized in its bulk form. Nevertheless, studies of this material in the nanometer thickness regime are rather scarce. In this article we demonstrate an easy way to synthesize ultrathin, highly crystalline flakes of PbI2 by precipitation from a solution in water. We thoroughly characterize the produced thin flakes with different techniques ranging from optical and Raman spectroscopy to temperature-dependent photoluminescence and electron microscopy. We compare the results to ab initio calculations of the band structure of the material. Finally, we fabricate photodetectors based on PbI2 and study their optoelectronic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...