Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 64(5): 1733-45, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14531806

RESUMEN

BACKGROUND: In proximal tubular cells, PDZK1 (NaPi-Cap1) has been implicated in apical expression of the Na+-dependent phosphate cotransporter (NaPi-IIa) via interaction with its C-terminus. PDZK1 represents a multidomain protein consisting of four PDZ domains and thus is believed to have a broader specificity besides NaPi-IIa. METHODS: We subjected single PDZ domains derived from PDZK1 either to yeast two-hybrid screens or yeast trap assays. Different pull-down assays and blot overlays were applied to corroborate the PDZK1-mediated interactions in vitro. Co-localization of interacting proteins with PDZK1 in proximal tubular cells was assessed by immunohistochemistry. RESULTS: In the yeast screens, the most abundant candidate protein to interact with PDZK1 was the membrane-associated protein of 17 kD (MAP17). Besides MAP17, C-terminal parts of following transporters were also identified: NaPi-IIa, solute carrier SLC17A1 (NaPi-I), Na+/H+ exchanger (NHE-3), organic cation transporter (OCTN1), chloride-formate exchanger (CFEX), and urate-anion exchanger (URAT1). In addition, other regulatory factors were found among the clones, such as a protein kinase A (PKA)-anchoring protein (D-AKAP2) and N+/H+ exchanger regulator factor (NHERF-1). All interactions of itemized proteins with PDZK1 were affirmed by in vitro techniques. Apart from PDZK1, strong in vitro interactions of NHERF-1 were also observed with the solute transporters (excluding MAP17) and D-AKAP2. All identified proteins were immunolocalized in proximal tubular cells, wherein all membrane proteins co-localized with PDZK1 in brush borders. CONCLUSION: We hypothesize that PDZK1 and NHERF-1 establish an extended network beneath the apical membrane to which membrane proteins and regulatory components are anchored.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Animales , Glicosilfosfatidilinositoles/metabolismo , Inmunohistoquímica , Túbulos Renales Proximales/citología , Proteínas de la Membrana/genética , Ratones , Microvellosidades/metabolismo , Unión Proteica/fisiología , Intercambiadores de Sodio-Hidrógeno , Técnicas del Sistema de Dos Híbridos , Levaduras
2.
Am J Physiol Renal Physiol ; 285(4): F784-91, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12837682

RESUMEN

An essential role in phosphate homeostasis is played by Na/Pi cotransporter IIa that is localized in the brush borders of renal proximal tubular cells. Recent studies identified several PDZ proteins interacting with the COOH-terminal tail of NaPi-IIa, such as PDZK1 and NHERF-1. Here, by using yeast two-hybrid screen of mouse kidney cDNA library, we attempted to find proteins interacting with the NH2-terminal part of NaPi-IIa. We identified MAP17, a 17-kDa membrane protein that has been described to be associated with various human carcinomas, but it is also expressed in normal kidneys. Results obtained by various in vitro analyses suggested that MAP17 interacts with the fourth domain of PDZK1 but not with other PDZ proteins localized in proximal tubular brush borders. As revealed by immunofluorescence, MAP17 was abundant in S1 but almost absent in S3 segments. No alterations of the apical abundance of MAP17 were observed after maneuvers undertaken to change the content of NaPi-IIa (parathyroid hormone treatment, different phosphate diets). In agreement, no change in the amount of MAP17 mRNA was observed. Results obtained from transfection studies using opossum kidney cells indicated that the apical localization of MAP17 is independent of PDZK1 but that MAP17 is required for apical localization of PDZK1. In summary, we conclude that MAP17 1) interacts with PDZK1 only, 2) associates with the NH2 terminus of NaPi-IIa within the PDZK1/NaPi-IIa/MAP17 complex, and 3) acts as an apical anchoring site for PDZK1.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Proteínas de la Membrana/fisiología , Simportadores/fisiología , Animales , Línea Celular , Túbulos Renales Proximales/citología , Masculino , Ratones , Ratones Endogámicos , Proteínas de Neoplasias , Zarigüeyas , Proteínas Cotransportadoras de Sodio-Fosfato , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA