Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(3): 353-365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443567

RESUMEN

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.


Asunto(s)
Embrión de Mamíferos , Estratos Germinativos , Embarazo , Femenino , Humanos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Transducción de Señal , Implantación del Embrión
3.
Nature ; 622(7983): 584-593, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369347

RESUMEN

The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Modelos Biológicos , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Proteínas Morfogenéticas Óseas , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Cuerpos Embrioides/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes/citología
4.
Stem Cell Reports ; 18(3): 654-671, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36801004

RESUMEN

Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification factors often span across developing zones contributing to difficulty in defining unique LGE, MGE or CGE profiles. Here we use human pluripotent stem cell (hPSC) reporter lines (NKX2.1-GFP and MEIS2-mCherry) and manipulation of morphogen gradients to gain greater insight into regional specification of these distinct zones. We identified Sonic hedgehog (SHH)-WNT crosstalk in regulating LGE and MGE fate and uncovered a role for retinoic acid signaling in CGE development. Unraveling the influence of these signaling pathways permitted development of fully defined protocols that favored generation of the three GE domains. These findings provide insight into the context-dependent role of morphogens in human GE specification and are of value for in vitro disease modeling and advancement of new therapies.


Asunto(s)
Interneuronas , Células Madre Pluripotentes , Humanos , Interneuronas/metabolismo , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Células Madre Pluripotentes/metabolismo
5.
Cell Stem Cell ; 29(10): 1445-1458.e8, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36084657

RESUMEN

Several in vitro models have been developed to recapitulate mouse embryogenesis solely from embryonic stem cells (ESCs). Despite mimicking many aspects of early development, they fail to capture the interactions between embryonic and extraembryonic tissues. To overcome this difficulty, we have developed a mouse ESC-based in vitro model that reconstitutes the pluripotent ESC lineage and the two extraembryonic lineages of the post-implantation embryo by transcription-factor-mediated induction. This unified model recapitulates developmental events from embryonic day 5.5 to 8.5, including gastrulation; formation of the anterior-posterior axis, brain, and a beating heart structure; and the development of extraembryonic tissues, including yolk sac and chorion. Comparing single-cell RNA sequencing from individual structures with time-matched natural embryos identified remarkably similar transcriptional programs across lineages but also showed when and where the model diverges from the natural program. Our findings demonstrate an extraordinary plasticity of ESCs to self-organize and generate a whole-embryo-like structure.


Asunto(s)
Embrión de Mamíferos , Neurulación , Animales , Desarrollo Embrionario , Células Madre Embrionarias , Ratones , Células Madre Embrionarias de Ratones
6.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563037

RESUMEN

Clinical studies have provided evidence for dopamine (DA) cell replacement therapy in Parkinson's Disease. However, grafts derived from foetal tissue or pluripotent stem cells (PSCs) remain heterogeneous, with a high proportion of non-dopaminergic cells, and display subthreshold reinnervation of target tissues, thereby highlighting the need to identify new strategies to improve graft outcomes. In recent work, Stromal Cell-Derived Factor-1 (SDF1), secreted from meninges, has been shown to exert many roles during ventral midbrain DA development and DA-directed differentiation of PSCs. Related, co-implantation of meningeal cells has been shown to improve neural graft outcomes, however, no direct evidence for the role of SDF1 in neural grafting has been shown. Due to the rapid degradation of SDF1 protein, here, we utilised a hydrogel to entrap the protein and sustain its delivery at the transplant site to assess the impact on DA progenitor differentiation, survival and plasticity. Hydrogels were fabricated from self-assembling peptides (SAP), presenting an epitope for laminin, the brain's main extracellular matrix protein, thereby providing cell adhesive support for the grafts and additional laminin-integrin signalling to influence cell fate. We show that SDF1 functionalised SAP hydrogels resulted in larger grafts, containing more DA neurons, increased A9 DA specification (the subpopulation of DA neurons responsible for motor function) and enhanced innervation. These findings demonstrate the capacity for functionalised, tissue-specific hydrogels to improve the composition of grafts targeted for neural repair.


Asunto(s)
Enfermedad de Parkinson , Animales , Biomimética , Diferenciación Celular/fisiología , Quimiocina CXCL12 , Dopamina/metabolismo , Neuronas Dopaminérgicas , Matriz Extracelular/metabolismo , Feto/metabolismo , Hidrogeles/química , Laminina , Enfermedad de Parkinson/terapia , Roedores/metabolismo
7.
Cell Stem Cell ; 29(3): 434-448.e5, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35180398

RESUMEN

Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.


Asunto(s)
Dopamina , Células Madre Pluripotentes , Adulto , Dopamina/metabolismo , Terapia Genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Mesencéfalo/metabolismo , Células Madre Pluripotentes/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/trasplante
8.
Nat Commun ; 12(1): 3679, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140473

RESUMEN

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.


Asunto(s)
Implantación del Embrión/genética , Desarrollo Embrionario , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/metabolismo , Análisis de la Célula Individual/métodos , Vía de Señalización Wnt , Proteína Morfogenética Ósea 1/antagonistas & inhibidores , Linaje de la Célula , Células Cultivadas , Implantación del Embrión/fisiología , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/fisiología , Estratos Germinativos/citología , Humanos , Procesamiento de Imagen Asistido por Computador , Familia de Multigenes , Proteína Nodal/antagonistas & inhibidores , RNA-Seq , Análisis Espacio-Temporal
9.
Stem Cell Reports ; 16(5): 1262-1275, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33836146

RESUMEN

Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease.


Asunto(s)
Corteza Cerebral/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Organogénesis , Transducción de Señal , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organogénesis/efectos de los fármacos , Factor de Transcripción PAX6/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo
10.
Dev Cell ; 56(3): 366-382.e9, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33378662

RESUMEN

The development of mouse embryos can be partially recapitulated by combining embryonic stem cells (ESCs), trophoblast stem cells (TS), and extra-embryonic endoderm (XEN) stem cells to generate embryo-like structures called ETX embryos. Although ETX embryos transcriptionally capture the mouse gastrula, their ability to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited potential of XEN cells. To address this, we generated ESCs transiently expressing transcription factor Gata4, which drives the extra-embryonic endoderm fate, and combined them with ESCs and TS cells to generate induced ETX embryos (iETX embryos). We show that iETX embryos establish a robust anterior signaling center that migrates unilaterally to break embryo symmetry. Furthermore, iETX embryos gastrulate generating embryonic and extra-embryonic mesoderm and definitive endoderm. Our findings reveal that replacement of XEN cells with ESCs transiently expressing Gata4 endows iETX embryos with greater developmental potential, thus enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre Pluripotentes Inducidas/citología , Morfogénesis , Animales , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Endodermo/citología , Transición Epitelial-Mesenquimal , Factor de Transcripción GATA4/metabolismo , Gastrulación , Ratones , Línea Primitiva/citología , Transducción de Señal
11.
STAR Protoc ; 1(2): 100065, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-33111103

RESUMEN

Here, we describe a xeno-free, feeder-free, and chemically defined protocol for the generation of ventral midbrain dopaminergic (vmDA) progenitors from human pluripotent stem cells (hPSCs). This simple-to-follow protocol results in high yields of cryopreservable dopamine neurons across multiple hPSC lines. Wnt signaling is the critical component of the differentiation and can be finely adjusted in a line-dependent manner to enhance production of dopamine neurons for the purposes of transplantation, studying development and homeostasis, disease modeling, drug discovery, and drug development. For complete details on the use and execution of this protocol, please refer to Gantner et al. (2020) and Niclis et al. (2017a).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Medios de Cultivo/metabolismo , Dopamina , Neuronas Dopaminérgicas/citología , Humanos , Mesencéfalo/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
12.
Cell Stem Cell ; 26(4): 511-526.e5, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059808

RESUMEN

Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.


Asunto(s)
Terapia Genética , Factor Neurotrófico Derivado de la Línea Celular Glial , Enfermedad de Parkinson , Trasplante de Células Madre , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Humanos , Enfermedad de Parkinson/terapia , Ratas , Ratas Sprague-Dawley
13.
Stem Cell Reports ; 13(5): 877-890, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31680060

RESUMEN

Human pluripotent stem cells are a valuable resource for transplantation, yet our ability to profile xenografts is largely limited to low-throughput immunohistochemical analysis by difficulties in readily isolating grafts for transcriptomic and/or proteomic profiling. Here, we present a simple methodology utilizing differences in the RNA sequence between species to discriminate xenograft from host gene expression (using qPCR or RNA sequencing [RNA-seq]). To demonstrate the approach, we assessed grafts of undifferentiated human stem cells and neural progenitors in the rodent brain. Xenograft-specific qPCR provided sensitive detection of proliferative cells, and identified germ layer markers and appropriate neural maturation genes across the graft types. Xenograft-specific RNA-seq enabled profiling of the complete transcriptome and an unbiased characterization of graft composition. Such xenograft-specific profiling will be crucial for pre-clinical characterization of grafts and batch-testing of therapeutic cell preparations to ensure safety and functional predictability prior to translation.


Asunto(s)
Encéfalo/citología , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/metabolismo , Transcriptoma , Animales , Línea Celular , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Xenoinjertos , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/trasplante , Análisis de Secuencia de ARN , Especificidad de la Especie
14.
J Neurosci ; 39(48): 9521-9531, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31641054

RESUMEN

Human pluripotent stem cells (hPSCs) are a promising resource for the replacement of degenerated ventral midbrain dopaminergic (vmDA) neurons in Parkinson's disease. Despite recent advances in protocols for the in vitro generation of vmDA neurons, the asynchronous and heterogeneous nature of the differentiations results in transplants of surprisingly low vmDA neuron purity. As the field advances toward the clinic, it will be optimal, if not essential, to remove poorly specified and potentially proliferative cells from donor preparations to ensure safety and predictable efficacy. Here, we use two novel hPSC knock-in reporter lines expressing GFP under the LMX1A and PITX3 promoters, to selectively isolate vm progenitors and DA precursors, respectively. For each cell line, unsorted, GFP+, and GFP- cells were transplanted into male or female Parkinsonian rodents. Only rats receiving unsorted cells, LMX1A-eGFP+, or PITX3-eGFP- cell grafts showed improved motor function over 6 months. Postmortem analysis revealed small grafts from PITX3-eGFP+ cells, suggesting that these DA precursors were not compatible with cell survival and integration. In contrast, LMX1A-eGFP+ grafts were highly enriched for vmDA neurons, and importantly excluded expansive proliferative populations and serotonergic neurons. These LMX1A-eGFP+ progenitor grafts accelerated behavioral recovery and innervated developmentally appropriate forebrain targets, whereas LMX1A-eGFP- cell grafts failed to restore motor deficits, supported by increased fiber growth into nondopaminergic target nuclei. This is the first study to use an hPSC-derived reporter line to purify vm progenitors, resulting in improved safety, predictability of the graft composition, and enhanced motor function.SIGNIFICANCE STATEMENT Clinical trials have shown functional integration of transplanted fetal-derived dopamine progenitors in Parkinson's disease. Human pluripotent stem cell (hPSC)-derived midbrain progenitors are now being tested as an alternative cell source; however, despite current differentiation protocols generating >80% correctly specified cells for implantation, resultant grafts contain a small fraction of dopamine neurons. Cell-sorting approaches, to select for correctly patterned cells before implantation, are being explored yet have been suboptimal to date. This study provides the first evidence of using 2 hPSC reporter lines (LMX1A-GFP and PITX3-GFP) to isolate correctly specified cells for transplantation. We show LMX1A-GFP+, but not PITX3-GFP+, cell grafts are more predictable, with smaller grafts, enriched in dopamine neurons, showing appropriate integration and accelerated functional recovery in Parkinsonian rats.


Asunto(s)
Proteínas con Homeodominio LIM/metabolismo , Mesencéfalo/metabolismo , Trastornos Parkinsonianos/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre/métodos , Factores de Transcripción/metabolismo , Animales , Línea Celular , Femenino , Predicción , Humanos , Masculino , Mesencéfalo/citología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/terapia , Ratas , Ratas Desnudas
15.
Stem Cell Reports ; 9(3): 868-882, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28867345

RESUMEN

Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types.


Asunto(s)
Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Trasplante de Células Madre , Factores de Transcripción/metabolismo , Animales , Axones/metabolismo , Diferenciación Celular , Línea Celular , Genes Reporteros , Humanos , Masculino , Mesencéfalo/citología , Actividad Motora , Red Nerviosa/metabolismo , Ratas Desnudas
16.
Stem Cells Transl Med ; 6(3): 937-948, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28297587

RESUMEN

Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)-derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson's disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder- and xenogeneic-free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock-in lines (LMX1A-eGFP and PITX3-eGFP) for in-depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this "next generation" protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno-free vmDA progenitors from LMX1A- and PITX3-eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC-derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937-948.


Asunto(s)
Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/trasplante , Mesencéfalo/citología , Actividad Motora , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Células Cultivadas , Criopreservación , Dopamina/metabolismo , Células Nutrientes/citología , Fibroblastos/citología , Humanos , Ratones , Enfermedad de Parkinson/patología , Fenotipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...