Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(6): e0076024, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775579

RESUMEN

Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.


Asunto(s)
Azospirillum brasilense , Proteínas Bacterianas , Quimiotaxis , Nitratos , Raíces de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiología , Nitratos/metabolismo , Raíces de Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
J Bacteriol ; 206(1): e0039723, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38054739

RESUMEN

Members of the widely conserved progestin and adipoQ receptor (PAQR) family function to maintain membrane homeostasis: membrane fluidity and fatty acid composition in eukaryotes and membrane energetics and fatty acid composition in bacteria. All PAQRs consist of a core seven transmembrane domain structure and five conserved amino acids (three histidines, one serine, and one aspartic acid) predicted to form a hydrolase-like catalytic site. PAQR homologs in Bacteria (called TrhA, for transmembrane homeostasis protein A) maintain homeostasis of membrane charge gradients, like the membrane potential and proton gradient that comprise the proton motive force, but their molecular mechanisms are not yet understood. Here, we show that TrhA in Escherichia coli has a periplasmic C-terminus, which places the five conserved residues shared by all PAQRs at the cytoplasmic interface of the membrane. Here, we characterize several conserved residues predicted to form an active site by site-directed mutagenesis. We also identify a specific role for TrhA in modulating unsaturated fatty acid biosynthesis with conserved residues required to either promote or reduce the abundance of unsaturated fatty acids. We also identify distinct roles for the conserved residues in supporting TrhA's role in maintaining membrane energetics homeostasis that suggest that both functions are intertwined and probably partly dependent on one another. An analysis of domain architecture of TrhA-like domains in Bacteria further supports a function of TrhA linking membrane energetics homeostasis with biosynthesis of unsaturated fatty acid in the membrane. IMPORTANCE Progestin and adipoQ receptor (PAQR) family proteins are evolutionary conserved regulators of membrane homeostasis and have been best characterized in eukaryotes. Bacterial PAQR homologs, named TrhA (transmembrane homeostasis protein A), regulate membrane energetics homeostasis through an unknown mechanism. Here, we present evidence linking TrhA to both membrane energetics homeostasis and unsaturated fatty acid biosynthesis. Analysis of domain architecture together with experimental evidence suggests a model where TrhA activity on unsaturated fatty acid biosynthesis is regulated by changes in membrane energetics to dynamically adjust membrane homeostasis.


Asunto(s)
Progestinas , Receptores de Adiponectina , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Esteroides , Ácidos Grasos/metabolismo , Homeostasis , Ácidos Grasos Insaturados , Bacterias/metabolismo
3.
J Bacteriol ; 205(6): e0048422, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37255486

RESUMEN

Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.


Asunto(s)
Azospirillum brasilense , Quimiotaxis , Quimiotaxis/fisiología , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Células Quimiorreceptoras , Citoplasma/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética
4.
Front Microbiol ; 12: 664826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968002

RESUMEN

Bacterial chemotaxis is the directed movement of motile bacteria in gradients of chemoeffectors. This behavior is mediated by dedicated signal transduction pathways that couple environment sensing with changes in the direction of rotation of flagellar motors to ultimately affect the motility pattern. Azospirillum brasilense uses two distinct chemotaxis pathways, named Che1 and Che4, and four different response regulators (CheY1, CheY4, CheY6, and CheY7) to control the swimming pattern during chemotaxis. Each of the CheY homologs was shown to differentially affect the rotational bias of the polar flagellum and chemotaxis. The role, if any, of these CheY homologs in swarming, which depends on a distinct lateral flagella system or in attachment is not known. Here, we characterize CheY homologs' roles in swimming, swarming, and attachment to abiotic and biotic (wheat roots) surfaces and biofilm formation. We show that while strains lacking CheY1 and CheY6 are still able to navigate air gradients, strains lacking CheY4 and CheY7 are chemotaxis null. Expansion of swarming colonies in the presence of gradients requires chemotaxis. The induction of swarming depends on CheY4 and CheY7, but the cells' organization as dense clusters in productive swarms appear to depend on functional CheYs but not chemotaxis per se. Similarly, functional CheY homologs but not chemotaxis, contribute to attachment to both abiotic and root surfaces as well as to biofilm formation, although these effects are likely dependent on additional cell surface properties such as adhesiveness. Collectively, our data highlight distinct roles for multiple CheY homologs and for chemotaxis on swarming and attachment to surfaces.

5.
mSystems ; 6(1)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594007

RESUMEN

Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense, chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN, which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks.IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.

6.
Philos Trans R Soc Lond B Biol Sci ; 375(1801): 20190408, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32362251

RESUMEN

The signalling pathways that regulate intercellular trafficking via plasmodesmata (PD) remain largely unknown. Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts are important for controlling PD, probably by retrograde signalling to the nucleus to regulate expression of genes that influence PD formation and function, an idea encapsulated in the organelle-nucleus-PD signalling (ONPS) hypothesis. ONPS is supported by findings that point to chloroplast redox state as also modulating PD. Here, we have attempted to further elucidate details of ONPS. Through reverse genetics, expression of select nucleus-encoded genes with known or predicted roles in chloroplast gene expression was knocked down, and the effects on intercellular trafficking were then assessed. Silencing most genes resulted in chlorosis, and the expression of several photosynthesis and tetrapyrrole biosynthesis associated nuclear genes was repressed in all silenced plants. PD-mediated intercellular trafficking was changed in the silenced plants, consistent with predictions of the ONPS hypothesis. One striking observation, best exemplified by silencing the PNPase homologues, was that the degree of chlorosis of silenced leaves was not correlated with the capacity for intercellular trafficking. Finally, we measured the distribution of PD in silenced leaves and found that intercellular trafficking was positively correlated with the numbers of PD. Together, these results not only provide further support for ONPS but also point to a genetic mechanism for PD formation, clarifying a longstanding question about PD and intercellular trafficking. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Núcleo Celular/fisiología , Cloroplastos/fisiología , Plasmodesmos/metabolismo , Transducción de Señal , Transporte de Proteínas
7.
Plant Sci ; 279: 70-80, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30709495

RESUMEN

Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad de la Planta , Plasmodesmos/inmunología , Plantas/inmunología , Plantas/metabolismo
8.
New Phytol ; 221(2): 850-865, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192000

RESUMEN

Chloroplasts retain part of their ancestral genomes and the machinery for expression of those genomes. The nucleus-encoded chloroplast RNA helicase INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is required for chloroplast ribosomal RNA processing and chloro-ribosome assembly. To further elucidate ISE2's role in chloroplast translation, two independent approaches were used to identify its potential protein partners. Both a yeast two-hybrid screen and a pull-down assay identified plastid ribosomal protein L15, uL15c (formerly RPL15), as interacting with ISE2. The interaction was confirmed in vivo by co-immunoprecipitation. Interestingly, we found that rpl15 null mutants do not complete embryogenesis, indicating that RPL15 is an essential gene for autotrophic growth of Arabidopsis thaliana. Arabidopsis and Nicotiana benthamiana plants with reduced expression of RPL15 developed chlorotic leaves, had reduced photosynthetic capacity and exhibited defective chloroplast development. Processing of chloroplast ribosomal RNAs and assembly of ribosomal subunits were disrupted by reduced expression of RPL15. Chloroplast translation was also decreased, reducing accumulation of chloroplast-encoded proteins, in such plants compared to wild-type plants. Notably, knockdown of RPL15 expression increased intercellular trafficking, a phenotype also observed in plants with reduced ISE2 expression. This finding provides further evidence for chloroplast function in modulating intercellular trafficking via plasmodesmata.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , ARN Helicasas/metabolismo , Proteínas Ribosómicas/metabolismo , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Genes Reporteros , Fotosíntesis , Plasmodesmos/metabolismo , Transporte de Proteínas , ARN Helicasas/genética , ARN del Cloroplasto/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/ultraestructura
9.
Plant Sci ; 275: 1-10, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30107876

RESUMEN

It is now widely accepted that plant RNAs can have effects at sites far away from their sites of synthesis. Cellular mRNA transcripts, endogenous small RNAs and defense-related small RNAs all move from cell to cell via plasmodesmata (PD), and may even move long distances in the phloem. Despite their small size, PD have complicated substructures, and the area of the pore available for RNA trafficking can be remarkably small. The intent of this review is to bring into focus the role of PD in cell-to-cell and long distance communication in plants. We consider how cellular RNAs could move through the cell to the PD and thence through PD. The protein composition of PD and the possible roles of PD proteins in RNA trafficking are also discussed. Recent evidence for RNA metabolism in organelles acting as a factor in controlling PD flux is also presented, highlighting new aspects of plant intra- and intercellular communication. It is clear that while the phenomenon of RNA mobility is common and essential, many questions remain, and these have been highlighted throughout this review.


Asunto(s)
Plasmodesmos/metabolismo , ARN de Planta/metabolismo , Comunicación Celular , Plantas/genética , Plantas/metabolismo
10.
Mol Plant Microbe Interact ; 30(6): 478-488, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28323529

RESUMEN

The chloroplast-resident RNA helicase ISE2 (INCREASED SIZE EXCLUSION LIMIT2) can modulate the formation and distribution of plasmodesmata and intercellular trafficking. We have determined that ISE2 expression is induced by viral infection. Therefore, the responses of Nicotiana benthamiana plants with varying levels of ISE2 expression to infection by Tobacco mosaic virus and Turnip mosaic virus were examined. Surprisingly, increased or decreased ISE2 expression led to faster viral systemic spread and, in some cases, enhanced systemic necrosis. The contributions of RNA silencing and hormone-mediated immune responses to the increased viral susceptibility of these plants were assessed. In addition, Arabidopsis thaliana plants with increased ISE2 expression were found to be more susceptible to infection by the beet cyst nematode Heterodera schachtii. Our analyses provide intriguing insights into unexpected functional roles of a chloroplast protein in mediating plant-pathogen interactions. The possible roles of plasmodesmata in determining the outcomes of these interactions are also discussed.


Asunto(s)
Arabidopsis/genética , Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Enfermedades de las Plantas/genética , Animales , Arabidopsis/parasitología , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , Plasmodesmos/genética , Plasmodesmos/metabolismo , Potyvirus/fisiología , Transporte de Proteínas/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Nicotiana/parasitología , Nicotiana/virología , Virus del Mosaico del Tabaco/fisiología , Tylenchoidea/fisiología
11.
Sci Transl Med ; 3(65): 65ra4, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228398

RESUMEN

Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.


Asunto(s)
Genes Recesivos/genética , Tamización de Portadores Genéticos/métodos , Pruebas Genéticas/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Niño , Bases de Datos Genéticas , Femenino , Pruebas Genéticas/economía , Genoma Humano , Heterocigoto , Humanos , Datos de Secuencia Molecular , Mutación , Embarazo , Diagnóstico Prenatal , Alineación de Secuencia , Análisis de Secuencia de ADN/economía
12.
Nature ; 464(7293): 1351-6, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20428171

RESUMEN

Monozygotic or 'identical' twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4(+) lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among approximately 3.6 million single nucleotide polymorphisms (SNPs) or approximately 0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of approximately 19,000 genes in CD4(+) T cells. Only 2 to 176 differences in the methylation of approximately 2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to approximately 800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Asunto(s)
Epigénesis Genética/genética , Genoma Humano/genética , Esclerosis Múltiple/genética , ARN Mensajero/genética , Gemelos Monocigóticos/genética , Adolescente , Adulto , Desequilibrio Alélico/genética , Mama/metabolismo , Neoplasias de la Mama/genética , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Islas de CpG/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL/genética , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Masculino , Polimorfismo Genético/genética , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo
13.
Mol Cell Biol ; 26(2): 617-29, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16382152

RESUMEN

Self-perpetuating protein aggregates transmit prion diseases in mammals and heritable traits in yeast. De novo prion formation can be induced by transient overproduction of the corresponding prion-forming protein or its prion domain. Here, we demonstrate that the yeast prion protein Sup35 interacts with various proteins of the actin cortical cytoskeleton that are involved in endocytosis. Sup35-derived aggregates, generated in the process of prion induction, are associated with the components of the endocytic/vacuolar pathway. Mutational alterations of the cortical actin cytoskeleton decrease aggregation of overproduced Sup35 and de novo prion induction and increase prion-related toxicity in yeast. Deletion of the gene coding for the actin assembly protein Sla2 is lethal in cells containing the prion isoforms of both Sup35 and Rnq1 proteins simultaneously. Our data are consistent with a model in which cytoskeletal structures provide a scaffold for generation of large aggregates, resembling mammalian aggresomes. These aggregates promote prion formation. Moreover, it appears that the actin cytoskeleton also plays a certain role in counteracting the toxicity of the overproduced potentially aggregating proteins.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Endocitosis , Mutación , Factores de Terminación de Péptidos , Priones/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...