Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 8(9): 4422-4430, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29760884

RESUMEN

Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid-based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade-off between somatic growth and the coloration intensity of a carotenoid-based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.

2.
Anal Bioanal Chem ; 405(11): 3603-10, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23440394

RESUMEN

Voltammetry of microparticles is applied to characterise and to identify solid analytes of interest in the field of cultural heritage. Nafion® is used for the immobilisation of solid microparticles onto the surface of a glassy carbon electrode by exploiting the deposition onto the electrode surface of a micro-volume of a suspension of the microsample in polymeric solution. Cyclic voltammetry and square wave voltammetry are applied to characterise and to identify the microparticles immobilised in the Nafion® coating. The analyte studied in this work is Prussian Blue as a typical inorganic pigment, with a relatively simple electrochemical behaviour. The proposed method is applied to a sample of Venetian marmorino plaster. The performance of Nafion® for this analysis is compared with that of the polymer Paraloid B72.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA