Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731686

RESUMEN

Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process.

2.
China CDC Wkly ; 6(15): 332-338, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736992

RESUMEN

Introduction: The emergence of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineage, BA.2.86, has sparked global public health concerns for its potential heightened transmissibility and immune evasion. Utilizing data from Shenzhen's city-wide wastewater surveillance system, we highlight the presence of the BA.2.86 lineage in Shenzhen. Methods: A mediator probe polymerase chain reaction (PCR) assay was developed to detect the BA.2.86 lineage in wastewater by targeting a specific mutation (Spike: A264D). Between September 19 and December 10, 2023, 781 wastewater samples from 38 wastewater treatment plants (WWTPs) and 9 pump stations in ten districts of Shenzhen were examined. Through multiple short-amplicon sequencing, three positive samples were identified. Results: The BA.2.86 lineage was identified in the wastewater of Futian and Nanshan districts in Shenzhen on December 2, 2023. From December 2 to 10, a total of 21 BA.2.86-positive wastewater samples were found across 6 districts (Futian, Nanshan, Longhua, Baoan, Longgang, and Luohu) in Shenzhen. The weighted average viral load of the BA.2.86 lineage in Shenzhen's wastewater was 43.5 copies/L on December 2, increased to 219.8 copies/L on December 4, and then decreased to approximately 100 copies/L on December 6, 8, and 10. Conclusions: The mediator probe PCR assay, designed for swift detection of low viral concentrations of the BA.2.86 lineage in wastewater samples, shows promise for detecting different SARS-CoV-2 variants. Wastewater surveillance could serve as an early detection system for promptly identifying specific SARS-CoV-2 variants as they emerge.

3.
Cell Prolif ; : e13656, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773710

RESUMEN

Melatonin (MLT) is a circadian hormone that reportedly influences the development and cyclic growth of secondary hair follicles; however, the mechanism of regulation remains unknown. Here, we systematically investigated the role of MLT in hair regeneration using a hair depilation mouse model. We found that MLT supplementation significantly promoted hair regeneration in the hair depilation mouse model, whereas supplementation of MLT receptor antagonist luzindole significantly suppressed hair regeneration. By analysing gene expression dynamics between the MLT group and luzindole-treated groups, we revealed that MLT supplementation significantly up-regulated Wnt/ß-catenin signalling pathway-related genes. In-depth analysis of the expression of key molecules in the Wnt/ß-catenin signalling pathway revealed that MLT up-regulated the Wnt/ß-catenin signalling pathway in dermal papillae (DP), whereas these effects were facilitated through mediating Wnt ligand expression levels in the hair follicle stem cells (HFSCs). Using a DP-HFSCs co-culture system, we verified that MLT activated Wnt/ß-catenin signalling in DPs when co-cultured with HFSCs, whereas supplementation of DP cells with MLT alone failed to activate Wnt/ß-catenin signalling. In summary, our work identified a critical role for MLT in promoting hair regeneration and will have potential implications for future hair loss treatment in humans.

4.
JAMA ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38754010

RESUMEN

This retrospective study uses electronic health record data to investigate the sex differences in guideline-based management outcomes between male and female patients with chronic kidney disease.

5.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591163

RESUMEN

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Simulación del Acoplamiento Molecular , Cicatrización de Heridas/genética , Mutación , Metilación
6.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604960

RESUMEN

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Quinolonas , Humanos , Kentucky , Filogenia , Salmonella , Antibacterianos/farmacología , Plásmidos/genética , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética
7.
Digit Health ; 10: 20552076241242773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550262

RESUMEN

Objective: Tongue segmentation as a basis for automated tongue recognition studies in Chinese medicine, which has defects such as network degradation and inability to obtain global features, which seriously affects the segmentation effect. This article proposes an improved model RTC_TongueNet based on DeepLabV3, which combines the improved residual structure and transformer and integrates the ECA (Efficient Channel Attention Module) attention mechanism of multiscale atrous convolution to improve the effect of tongue image segmentation. Methods: In this paper, we improve the backbone network based on DeepLabV3 by incorporating the transformer structure and an improved residual structure. The residual module is divided into two structures and uses different residual structures under different conditions to speed up the frequency of shallow information mapping to deep network, which can more effectively extract the underlying features of tongue image; introduces ECA attention mechanism after concat operation in ASPP (Atrous Spatial Pyramid Pooling) structure to strengthen information interaction and fusion, effectively extract local and global features, and enable the model to focus more on difficult-to-separate areas such as tongue edge, to obtain better segmentation effect. Results: The RTC_TongueNet network model was compared with FCN (Fully Convolutional Networks), UNet, LRASPP (Lite Reduced ASPP), and DeepLabV3 models on two datasets. On the two datasets, the MIOU (Mean Intersection over Union) and MPA (Mean Pixel Accuracy) values of the classic model DeepLabV3 were higher than those of FCN, UNet, and LRASPP models, and the performance was better. Compared with the DeepLabV3 model, the RTC_TongueNet network model increased MIOU value by 0.9% and MPA value by 0.3% on the first dataset; MIOU increased by 1.0% and MPA increased by 1.1% on the second dataset. RTC_TongueNet model performed best on both datasets. Conclusion: In this study, based on DeepLabV3, we apply the improved residual structure and transformer as a backbone to fully extract image features locally and globally. The ECA attention module is combined to enhance channel attention, strengthen useful information, and weaken the interference of useless information. RTC_TongueNet model can effectively segment tongue images. This study has practical application value and reference value for tongue image segmentation.

8.
Cell Stress Chaperones ; 29(2): 272-284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485044

RESUMEN

Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Hiperglucemia , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Lactato Deshidrogenasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
9.
Biochem Biophys Rep ; 37: 101634, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38188365

RESUMEN

BRAF mutation is a driver mutation in colorectal cancer (CRC), and BRAFV600E mutation is found in 10-15 % of all CRCs. BRAF mutant CRCs in patients are primarily localized in the right colon, including the cecum. However, in the Vill-Cre;BRAFV600E/+ mice, adenomas mainly developed in the small intestines of the mice, and no tumor formed in the cecum. The mice model of BRAFV600E-mutant CRC with tumors in the cecum is lacking. Dextran Sulfate Sodium (DSS) treatment induces colitis in mice. Acute DSS treatment does not lead to tumor formation. We show that DSS treatment and BRAFV600E mutation synergistically induced cecal tumorigenesis, and cecal tumors formed within three months after five-day DSS treatment. The location of the adenomas supports the patient relevance of the model. Our BRAFV600E/DSS model provides a valuable in vivo model for future identification and validation of novel therapeutic approaches for treating BRAF-mutant CRC. Our results are consistent with the notion that BRAFV600E mutation is an oncogenic event that can shift controlled regeneration to unrestrained oncogenesis.

10.
Res Sq ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36778401

RESUMEN

BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.

11.
Food Chem ; 439: 138133, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064841

RESUMEN

This study was the first to comprehensively investigate the metabolic mechanism of flavonoid glycosides (FGs) and their contribution to flavor evolution during white tea processing using quantitative descriptive analysis, metabolomics, dose-over-threshold factors and pseudo-first-order kinetics. A total of 223 flavonoids were identified. Total FGs decreased from 7.02 mg/g to 4.35 mg/g during processing, compared to fresh leaves. A total of 86 FGs had a significant impact on the flavor evolution and 9 key flavor FGs were identified. The FG biosynthesis pathway was inhibited during withering, while the degradation pathway was enhanced. This promoted the degradation of 9 key flavor FGs following pseudo-first-order kinetics during withering. The degradation of the FGs contributed to increase the taste acceptance of white tea from -4.18 to 1.32. These results demonstrated that water loss stress during withering induces the degradation of key flavor FGs, contributing to the formation of the unique flavor of white tea.


Asunto(s)
Camellia sinensis , Flavonoides , Flavonoides/análisis , Glicósidos/metabolismo , Camellia sinensis/metabolismo , Metabolómica/métodos , Té/metabolismo
12.
Microorganisms ; 11(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630652

RESUMEN

Yaks live in the harsh environment of the Qinghai-Tibet Plateau, and the cold climate causes lower growth efficiency. The aim of this experiment was to explore the effects of drinking warm water on the growth performance in yak calves and investigate the underlying physiological mechanisms. A total of 24 Datong yak calves were selected and randomly assigned into the cold water group (group C, water temperature around 0-10 °C without any heating; 58.03 ± 3.111 kg) and the warm water group (group W, water constantly heated at 2 °C; 59.62 ± 2.771 kg). After the 60-day experiment, body weight was measured, and rumen fluid and blood serum samples were collected for analysis. The results show that the body weight and average daily gain of yaks that drank warm water were higher compared to those that drank cold water (p < 0.05). The acetic, propionic, isobutyric, valeric, and isovaleric acid concentrations were higher in group W than in group C (p < 0.05). Additionally, warm water changed the ruminal microbes at different levels. At the phylum level, the relative abundance of Tenericutes, Kiritimatiellaeota, and Elusimicrobiota was higher in group C (p < 0.05). At the genus level, three genera were increased by warm water, including Ruminococcoides and Eubacteriales Family XIII. Incertae Sedis, and 12 genera were decreased, including Ruminococcus (p < 0.05). At the species level, unclassified Prevotellaceae and Ruminococcoides bili were increased by warm water compared to cold water (p < 0.05). According to the metabolomics results, metabolites, including valine, isoleucine, PC (15:0/22:2(13Z,16Z)), and LysoPC (18:0/0:0), were increased in the warm water group compared to the cold water group (p < 0.05), and were enriched in glycerophospholipid and amino acid metabolism pathways. This study analyzed the differences in ruminal microbes and metabolomes of yak calves provided with water at different temperatures and revealed the potential mechanism for better performance promoted by warm drinking water.

13.
Animals (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443871

RESUMEN

This study was conducted to investigate the effects of heated water intake on the growth performance, serum biochemical indexes, apparent total tract digestibility (ATTD) of nutrients and ruminal fermentation function of yak calves in winter. A total of 24 yaks (59.09 ± 3.181 kg) were randomly selected and divided into a cold water (fluctuated with the temperature of test sites at 0-10 °C) group (CW) (58.58 ± 3.592 kg) and a heated water (20 °C) group (HW) (59.61 ± 2.772 kg). After 2 months of the experiment, body weight, serum biochemical indexes, ruminal fermentation characteristics and ATTD were measured. The results showed that drinking heated water increased (p < 0.05) the total weight gain and average daily gain of yaks compared with those drinking cold water. Heated water increased (p < 0.05) the levels of immune globulin M, interleukin-6, triiodothyronine, tetraiodothyronine and growth hormone compared with cold water. In addition, yaks drinking heated water showed higher (p < 0.05) ATTD of crude protein and ether extract, as well as increased (p < 0.05) content of total protein, albumin and urea nitrogen in serum than those drinking cold water. Compared with cold water, heated water showed increased (p < 0.05) total volatile fatty acids, acetic acid and propionic acid, and a reduced (p < 0.05) acetic acid to propionic acid ratio (p < 0.05). In conclusion, drinking heated water at 20 °C could improve performance via increasing nutrient digestibility and ruminal fermentation function in yak calves.

14.
ACS Appl Mater Interfaces ; 15(15): 18608-18619, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37032476

RESUMEN

Bacterial infection and excess reactive oxygen species are key factors that lead to slow or substantially delayed wound healing. It is crucial to design and develop new nanomaterials with antibacterial and antioxidative capabilities for wound healing. Here, positively charged carbon dots (CDs) are rationally designed and synthesized from p-phenylenediamine and polyethyleneimine by a facile one-pot solvothermal method, which show good biocompatibility in in vitro cytotoxicity, hemolysis assays, and in vivo toxicity evaluation. The positively charged CDs show superior antimicrobial effect against Staphylococcus aureus (S. aureus) at very low concentrations, reducing the risk of wound infection. At the same time, CDs with surface defects and unpaired electrons can effectively scavenge excess free radicals to reduce oxidative stress damage, accelerate wound inflammation-proliferation transition, and promote wound healing. The mouse model of skin infection demonstrates that CDs can effectively promote the wound healing of skin infection without obvious side effects by simply dropping or spraying onto the wound. We believe that the prepared CDs have satisfactory biocompatibility, antioxidant capacity, and excellent antibacterial activity and have great application potential in wound healing.


Asunto(s)
Infecciones Estafilocócicas , Infección de Heridas , Ratones , Animales , Antioxidantes/farmacología , Staphylococcus aureus , Carbono , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico
15.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36829950

RESUMEN

There is increasing interest in the production and consumption of tea (Camellia sinensis L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model.

16.
J Plant Res ; 136(3): 291-304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808315

RESUMEN

As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.


Asunto(s)
Genoma del Cloroplasto , Pancreatitis , Rheum , Filogenia , Filogeografía , Rheum/química , Rheum/genética , Teorema de Bayes , Enfermedad Aguda , Pancreatitis/genética
17.
Anal Bioanal Chem ; 415(18): 4255-4264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36350343

RESUMEN

In this work, phosphorus-doped carbon dots (P-DESCDs) were successfully prepared using choline chloride/lactic acid type deep eutectic solvent and phosphoric acid as ingredients, and (3-aminopropyl) trimethoxysilane was used as a bridge to graft P-DESCDs onto the silica surface to obtain a new mixed-mode stationary phase (Sil-P-DESCDs) for reversed-phase and hydrophilic interaction liquid chromatography. The successful preparation of the stationary phase was confirmed by laser scanning confocal microscopy, elemental analysis, and Fourier transform infrared spectrometry. Interestingly, the doping of phosphorus greatly improved the separation performance and hydrophilicity of the Sil-P-DESCDs column. The Sil-P-DESCDs column was found to have certain hydrophobicity, hydrogen bonding ability and shape selectivity by Tanaka and Engelhardt standard test mixtures, and a series of hydrophilic and hydrophobic compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, sulfonamides, aromatic amines, phenols, flavonoids, nucleoside bases, and alkaloids. In addition, the effects of mobile phase ratio, column temperature, flow rate, salt concentration, and pH on the retention of analytes on Sil-P-DESCDs columns were investigated. Finally, the Sil-P-DESCDs column was applied to the qualitative and quantitative analysis of calcein-7-glucoside in the real sample of medicinal Astragalus pellets, and it was found at a concentration of 0.02 mg/mL.


Asunto(s)
Disolventes Eutécticos Profundos , Dióxido de Silicio , Dióxido de Silicio/química , Cromatografía de Fase Inversa/métodos , Carbono , Solventes , Interacciones Hidrofóbicas e Hidrofílicas
18.
Genes (Basel) ; 13(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36140760

RESUMEN

Rheum officinale Baill. is an important traditional Chinese medicinal herb, its dried roots and rhizomes being widely utilized to cure diverse diseases. However, previous studies mainly focused on the active compounds and their pharmacological effects, and the molecular mechanism underlying the biosynthesis of these ingredients in R. officinale is still elusive. Here, we performed comparative transcriptome analyses to elucidate the differentially expressed genes (DEGs) in the root, stem, and leaf of R. officinale. A total of 236,031 unigenes with N50 of 769 bp was generated, 136,329 (57.76%) of which were annotated. A total of 5884 DEGs was identified after the comparative analyses of different tissues; 175 and 126 key enzyme genes with tissue-specific expression were found in the anthraquinone, catechin/gallic acid biosynthetic pathway, respectively, and some of these key enzyme genes were verified by qRT-PCR. The phylogeny of the PKS III family in Polygonaceae indicated that probably only PL_741 PKSIII1, PL_11549 PKSIII5, and PL_101745 PKSIII6 encoded PKSIII in the polyketide pathway. These results will shed light on the molecular basis of the tissue-specific accumulation and regulation of secondary metabolites in R. officinale, and lay a foundation for the future genetic diversity, molecular assisted breeding, and germplasm resource improvement of this essential medicinal plant.


Asunto(s)
Catequina , Policétidos , Rheum , Antraquinonas , Ácido Gálico , Perfilación de la Expresión Génica , Rheum/genética
19.
Foods ; 11(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36140943

RESUMEN

Panyong Congou black tea (PCT) is one of the most representative and historically famous Congou black teas in China and has been gaining more and more attention for its beneficial health properties. Currently, four grades of PCT are available, based on the raw leaf materials and consumer palatability. The chemical profiles distinguishing different grades of PCT are yet to be defined, nor has the relationship with grade been evaluated. In the present study, chemometric analysis showed that epigallocatechin (EGC), catechin (C), polyphenols, gallic acid (GA), and free amino acids are grade related bio-markers of PCT. These compounds are associated with the sweet and mellow aftertaste of PCT. A total of 34 volatile components were identified, of which the three component types with the highest relative percentages were alcohols (51.34-52.51%), ketones (27.31-30.28%), and aldehydes (12.70-13.18%). Additionally, our results revealed that sweet floral and fruity aromas were positively correlated with six volatile organic compounds (VOCs), 1-pentanol, propyl hexanoate, linalool, cyclohexanone, hexanal, and 2,5-dimethylpyrazine. Clear discrimination was achieved using orthogonal projections to latent structures discriminant analysis (OPLS-DA). The findings provide vital information on the characteristic flavor of each grade of PCT.

20.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36017799

RESUMEN

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Asunto(s)
Células Endoteliales , Animales , Diferenciación Celular/genética , Proteína-Tirosina Quinasas de Adhesión Focal , Homocigoto , Ratones , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...