Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1336232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708081

RESUMEN

Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.

2.
Biomed Pharmacother ; 173: 116415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479182

RESUMEN

Tetramethylpyrazine nitrone (TBN), a novel derivative of tetramethylpyrazine (TMP) designed and synthesized by our group, possesses multi-functional mechanisms of action and displays broad protective effects in vitro and in animal models of age-related brain disorders such as stroke, Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD). In the present report, we investigated the effects of TBN on aging, specifically on muscle aging and the associated decline of motor functions. Using a D-galactose-induced aging mouse model, we found that TBN could reverse the levels of several senescence and aging markers including p16, p21, ceramides, and telomere length and increase the wet-weight ratio of gastrocnemius muscle tissue, demonstrating its efficacy in ameliorating muscle aging. Additionally, the pharmacological effects of TBN on motor deficits (gait analysis, pole-climbing test and grip strength test), muscle fibrosis (hematoxylin & eosin (HE), Masson staining, and αSMA staining), inflammatory response (IL-1ß, IL-6, and TNF-α), and mitochondrial function (ATP, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were also confirmed in the D-galactose-induced aging models. Further experiments demonstrated that TBN alleviated muscle aging and improved the decline of age-related motor deficits through an AMPK-dependent mechanism. These findings highlight the significance of TBN as a potential anti-aging agent to combat the occurrence and development of aging and age-related diseases.


Asunto(s)
Galactosa , Fármacos Neuroprotectores , Pirazinas , Ratones , Animales , Proteínas Quinasas Activadas por AMP , Fármacos Neuroprotectores/farmacología , Envejecimiento , Transducción de Señal , Músculo Esquelético
3.
J Pharm Pharmacol ; 75(8): 1086-1099, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167529

RESUMEN

OBJECTIVES: We aimed to elucidate the therapeutic potential of Chrysin (CN) against the high-fat diet (HFD) induced non-alcoholic fatty liver disease (NAFLD) and its mechanism. METHODS: To assess the hypothesis, NAFLD was induced in C57BL/6 mice by feeding a high-fat diet for up to two months, followed by CN administration (for three months). Liver injury/toxicity, lipid deposition, inflammation and fibrosis were detected via molecular and biochemical analysis, including blood chemistry, immunoimaging and immunoblotting. Moreover, we performed proteomic analysis to illuminate Chrysin's therapeutic effects further. KEY FINDINGS: CN treatment significantly reduced liver-fat accumulation and inflammation, ultimately improving obesity and liver injury in NAFLD mice. Proteomic analysis showed that CN modified the protein expression profiles in the liver, particularly improving the expression of proteins related to energy, metabolism and inflammation. Mechanistically, CN treatment increased AMP-activated protein and phosphorylated CoA (P-ACC). Concurrently, it reduced inflammation and inflammation activation by inhibiting NLRP3 expression. CONCLUSIONS: In summary, CN treatment reduced lipid metabolism by AMPK and inflammasome activation by NLRP3 inhibition, ultimately improving NAFLD progression. These findings suggest that CN could be a potential treatment candidate for the NFLAD condition.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteómica , Ratones Endogámicos C57BL , Hígado , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos
4.
Biochem Biophys Res Commun ; 604: 144-150, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303681

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles accompanied by progressive neurite loss. Mitochondria play pivotal roles in AD development. PRDX3 is a mitochondrial peroxide reductase critical for H2O2 scavenging and signal transduction. In this study, we found that PRDX3 knockdown (KD) in the N2a-APPswe cell line promoted retinoic acid (RA)-induced neurite outgrowth but did not reduce the viability of cells damaged by tert-butyl hydroperoxide (TBHP). We found that knocking down PRDX3 expression induced dysregulation of more than one hundred proteins, as determined by tandem mass tag (TMT)-labeled proteomics. A Gene Ontology (GO) analysis revealed that the dysregulated proteins were enriched in protein localization to the plasma membrane, the lipid catabolic process, and intermediate filament cytoskeleton organization. A STRING analysis showed close protein-protein interactions among dysregulated proteins. The expression of Annexin A1 (ANXA1), serine (Ser)-/threonine (Thr)-protein phosphatase 2A catalytic subunit alpha isoform (PP2A) and glutathione S-transferase Mu 2 (GSTM2) was significantly upregulated in PRDX3-KD N2a-APPswe cell lines, as verified by western blotting. Our study revealed, for the first time, that PRDX3 may play important roles in neurite outgrowth and AD development.


Asunto(s)
Enfermedad de Alzheimer , Proyección Neuronal , Peroxiredoxina III , Enfermedad de Alzheimer/metabolismo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Neuritas/metabolismo , Proyección Neuronal/genética , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...